

Integration of Photogrammetric and LiDAR Data for Accurate Reconstruction & Realistic Visualization of Urban Environments

Ayman F. Habib

Digital Photogrammetry Research Group

http://dprg.geomatics.ucalgary.ca

Department of Geomatics Engineering University of Calgary, Canada

Acknowledgement

Overview

- Need for accurate mapping of urban environments
- LiDAR and photogrammetric data: Why?
- Prerequisites and procedures for efficient photogrammetric and LiDAR data integration (emphasis: 3D reconstruction & visualization):
 - QA/QC procedures
 - Correspondence (orthophoto generation)
 - LiDAR data classification
 - DBM generation (hypothesis generation and reconstruction)
- Concluding remarks

Urban Environments

- Globally: The number of dwellers in urban areas is expected to rise to almost 5 billion inhabitants by 2030 (62% of the global population at that time).
- Canada: Population living in metropolitan areas witnessed an increase of 45% (1971 2001).
 - In comparison, population living in rural areas only grew by 13%.
- To avoid social and environmental problems arising from this rapid urbanization, federal and local governments must have access to <u>accurate</u> and <u>current</u> **geo-spatial information** in a <u>timely manner</u> and at a <u>reasonable cost</u>.

Existing Tools

- Current technology and tools (i.e., Google Earth, Microsoft's Virtual Earth, etc.) are good enough for navigation.
 - However, the level of accuracy is not high enough for <u>design</u> and engineering applications.
 - Telecommunication,
 - Architectural planning,
 - Real-estate evaluation,
 - Change detection applications,
 - Security applications,
 - Maintenance planning,
 - Etc.

Proposed Tool

(X, Y, Z): 1122.23 m, 3251.53 m, 72.03 m (±10 – ±30cm)

(R, G, B): 23, 136, 69

Accurate Enough for Engineering Applications

LiDAR + Photogrammetric Data: Why?

- There has been a recent increase in the volume and varying formats of remote sensing data (e.g., LiDAR data and imagery captured by digital cameras).
 - LiDAR provides a dense point cloud representing the object space surface, and thus offers a fast and accurate way of obtaining a Digital Surface Model (DSM).
 - Digital cameras provide an alternative to the conventional large format analogue cameras, for rapid data collection.
- Through this work, the advantages of the integration of these two sources of data are investigated for the purpose of accurate reconstruction and realistic visualization of urban environments.

Photogrammetric Principles

Photogrammetric Principles

Photogrammetric Principles

• The position and the orientation of the two camera stations have to be known (geo-referencing problem).

Operational Photogrammetric Systems

Frame Cameras

RC10

DMC

Applanix DSS

Kodak 14n

Canon EOS 1D

SONY 717

Line Cameras

ADS 40

FIG, February 4 - 2009 =

LiDAR Principles

Three Measurement Systems

- 1. GNSS
- 2. IMU
- 3. Laser scanner emits laser beams with high frequency and collects the reflections

Direct acquisition of high density and accurate topographic data

Operational LiDAR Systems

ALS 40 (Leica Geosystems)

OPTECH ALTM 3100

Photogrammetric and LiDAR Data: Why?

LiDAR (Pros)	Photogrammetry (Cons)
Dense information from homogeneous surfaces	Almost no positional information along homogeneous surfaces
Day or night data collection	Day time data collection
Direct acquisition of 3D coordinates	Complicated and sometimes unreliable matching procedures
Vertical accuracy is better than its planimetric accuracy	Vertical accuracy is worse than the planimetric accuracy

Photogrammetric and LiDAR Data: Why?

Photogrammetry (Pros)	LiDAR (Cons)
High redundancy	No inherent redundancy
Rich with semantic information	Positional; difficult to derive semantic information
Dense positional information along object space breaklines	Almost no information along breaklines
Planimetric accuracy is better than the vertical accuracy	Planimetric accuracy is worse than the vertical accuracy
Transparent Model	Non-transparent model

LiDAR + Photogrammetric Data: How?

- There are several **prerequisites** for the integration of LiDAR and image data for the reconstruction and visualization of urban environments:
 - System Calibration (camera and LiDAR systems),
 - Quality Control (QC) of the photogrammetric and LiDAR data,
 - Registration of the photogrammetric and LiDAR data to a common reference frame, and
 - Relating the spectral and positional attributes in photogrammetric and LiDAR data.

Quality Assurance & Quality Control

- Quality assurance (Pre-mission):
 - Management activities to ensure that a process, item, or service is of the quality needed by the user.
 - It deals with creating management controls that cover planning, implementation, and review of data collection activities.
 - Key activity in the quality assurance is the <u>calibration</u> <u>procedure</u>.
- Quality control (Post-mission):
 - Provide routines and consistent checks to ensure data integrity, correctness, and completeness.
 - Check whether the desired quality has been achieved.

Low-Cost Imaging Systems

Kodak 14n

Canon EOS 1D

SONY 717

Camera calibration and stability analysis should be carefully addressed.

DPRG

Camera Calibration (New Methodology)

Camera Calibration (New Methodology)

FIG, February 4 - 2009 =

Camera Calibration (New Methodology)

QC: Camera Calibration

009 =

Stability Analysis (New Methodology)

Reconstructed bundle using IOP_I Reconstructed bundle using IOP_{II}

LiDAR QA/QC

- LiDAR Data in Overlapping Strips
 - ✓ Point cloud coordinates
 - ✓ Raw measurements are not necessary available

LiDAR QA/QC

Check for the presence of biases

LiDAR QA/QC

Check the noise level in the point cloud after bias removal **DPRG**

Proposed Workflow

- When integrating data from different sources, the datasets must be registered to a common reference frame.
- LiDAR geo-referencing is directly established through the GNSS/INS components of the LiDAR system.
- LiDAR can be used as the source of control data for image geo-referencing.

Input perspective imagery

- Impact of missregistration
 - Produced orthophoto
 from optical imagery and
 LiDAR data using an
 independent source of
 control for
 photogrammetric geo referencing.

- Proper registration:
 - Produced orthophoto
 from optical imagery
 and LiDAR data using
 LiDAR as the source of
 control for
 photogrammetric geo referencing.

Potential Primitives

LiDAR cloud

Digital Photogrammetry = Research Group

Image patch

Image patch

= FIG, February 4 - 2009 *=*

Proposed Workflow

Perspective Image

FIG, February 4 - 2009

Orthophoto

= FIG, February 4 - 2009 =

Beyond Orthophotos: 3D Realistic Views

(X, Y, Z): 1122.23 m, 3251.53 m, 72.03 m

(R, G, B): 23, 136, 69

Differential Orthophoto Generation

Research Group

Perspective Image

Orthophoto with Ghost Images

FIG, February 4 - 2009 🚄

True Orthophoto without Ghost Images

FIG, February 4 - 2009 🚄

True Orthophoto After Occlusion Filling

True Orthophoto After Boundary Enhancement

FIG, February 4 - 2009 🚄

DBM Generation

- DBM generation consists of two processes:
 - Building Detection: The process of generating building hypotheses by differentiating buildings from other objects within the data
 - Building Reconstruction: The process of utilizing the detected building regions in the data to derive the necessary building model parameters/primitives for its 3-D representation

Research Group

Aerial Photo over UofC

Original LiDAR Points over UofC

Ground/Non-Ground Classification

Classifying Generated Groups

Research Group

Building Hypothesis Generation

Customization of parameters for Building hypothesis

Building Hypothesis Generation

DPRG

Research Group

Digital Photogrammetry

Segmentation of Building Primitives

Segmentation of Building Primitives

Neighborhood Definition

Neighboring points that belong to the same physical surface (adaptive cylinder).

Attributes: Parameters of the plane through the defined neighborhood for a given point

Segmentation of Building Primitives

Simultaneously considering Homogeneity (globally) in the parameter space

+ Proximity (locally) in the object space → Accurate & Robust solution

Building Hypothesis → Building Primitives

Building Primitives

FIG, February 4 - 2009 ==

Rooftop Boundary Refinement

Rooftop Boundary Refinement

Rooftop Boundary Refinement

• Line Detection

Edge lines on image #1

Edge lines on image #2

Line Matching

Research Group

Warped imagery comparison

• Precise boundary segment selection

Extracted Rooftop Patches

Simple building primitive

Building primitive with low complexity

Building primitive with medium complexity

Building primitive with high complexity

FIG, February 4 - 2009 ==

Manual Editing

Enhanced DSM

• The rooftop patches (and footprints) are added to the DTM, and an enhanced DSM is produced.

70

FIG, February 4 - 2009 =

DPRG

Generated DBM

• DBM Visualization: Link to Google Earth by KML

Orthophotos: Qualitative Analysis

2D visualization before DSM enhancement

2D visualization after DSM enhancement

= FIG, February 4 - 2009 *=*

3D Visualization: Qualitative Analysis

3D visualization before DSM enhancement

3D visualization after DSM enhancement

DBM: Quantitative Analysis

- 40 building primitives with 291 boundary segments
- Quantitative analysis using <u>only the automatically established</u> <u>boundary segments</u>
- Established segments: 311
- Correctly determined segment: 276
- Correctness = % of correctly determined segments among the established ones = 276/311 = 89%
- Completeness = % of correctly determined segments among total actual boundary segments = 276/291 = 95%

DBM: Quantitative Analysis

• Accuracy of the established DBM: RMSE computation using the DBM corner points

		Manual DBM	Automated DBM	
	No. of vertices	116	78	
	Mean (X), m	-0.086	-0.040	
	Mean (Y), m	-0.008	0.003	
	Mean (Z), m	-0.091	0.553	
	Std_dev (X), m	±0.349	±0.392	
	Std_dev (Y), m	±0.364	±0.407	
	Std_dev (Z), m	±0.239	±0.237	
	RMSE (X), m	0.357	0.392	
	RMSE (Y), m	0.362	0.405	
	RMSE (Z), m	0.255	0.601	

Heights of the fences range from 0.5m to 1.0m

Final Product

Main Campus Area

Final Product (Sample)

Final Product (Sample)

Final Product (Sample)

Concluding Remarks

- There is a wide range of data acquisition systems, which provide data with complementary information content.
 - Integration is necessary for complete description of 3D environments.
- Successful integration depends on:
 - Validity of the sensor model and parameters,
 - Quality of the data (practical QC procedures),
 - Registration/geo-referencing of the multi sensory data,
 - Correspondence between conjugate elements in the multisensory data, and

 $\mathbf{p}_{\mathbf{R}\mathbf{G}}$ Quality of the reconstruction & visualization techniques.

