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SUMMARY  

 

Cadastral plans are used in land registration systems for defining legal boundaries of land 

parcels and properties as well as their associated rights, restrictions, and responsibilities 

(RRRs). However, existing registered cadastral plans are in 2D non-machine-readable formats 

and data within these plans are not easily accessible and readily usable, leading to unnecessary 

delays, disruptions, and costs within land development projects. Artificial intelligence (AI) as 

an emerging technology has been recognized as one of the operational parameters for advancing 

land administration systems (LASs) which can offer transformative solutions to overcome 

traditional approaches. This paper presents a new approach to efficiently retrieve land and 

property information from cadastral plans, reducing the high cognitive load associated with 

manual approaches. Our approach’s two core functionalities are data extraction from plans 

using computer vision and communication with plans using natural language processing (NLP). 

To demonstrate our approach, a prototype chatbot employing generative pretrained transformer 

(GPT) as the core large language model (LLM) was developed for data querying from plans. 

Initial testing shows effective handling of semantic queries, while highlighting the need for 

further refinement and development in handling more specific queries within land 

administration domain and complex spatial queries. 
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1. INTRODUCTION 

 

Effective management of land and property data during its lifecycle is significantly important 

for the operational efficiency of four critical land administration functions: land ownership, 

value, use, and development. This results in promoting economic development, environmental 

sustainability, and social well-being in all jurisdictions and countries (Williamson et al., 2010). 

Considering land ownership as the basis for the next administrative activities, cadastral plans 

are common data used for defining and registering boundaries of land parcels and properties as 

well as their associated rights, restrictions, and responsibilities (RRRs). In Victoria, Australia, 

plan of subdivision (PS) and plan of consolidation (PC) are currently used to document and 

represent legal information about the ownership and extent of RRRs over land parcels and 

properties. In addition to PSs and PCs, abstract of field records (AFRs) are used for 

documenting and representing the required survey information such as land parcels’ connection 

to a road intersection or a Crown boundary for generating new plans (Land Use Victoria, 

2024b). Any land transaction such as subdivisions, consolidations, and boundary realignments 

involving new legal boundaries or modifying existing boundaries must be supported by 

performing land surveying and land registration activities to issue new titles for the new land 

parcels. These plans are used by relevant stakeholders involved in all stages of land 

development projects from initial design to future maintenance and form the backbone of 

various land administration processes such as back-capturing and examination. 

However, existing registered cadastral plans are in 2D non-machine-readable formats such as 

papers and scanned documents which have static representation and lack intelligence. These 

plans provide essential land and property information. However, due to the special 

characteristics of these plans, administrative, legal, and survey data within these plans are not 

easily accessible and readily usable, leading to insufficient data queries. The most apparent 

characteristics of these plans are (see Figure 1): 

• Dense and detailed data: Each sheet of the plans contains dense and detailed textual 

elements (e.g., characters, numbers, and punctuations) in multiple sizes and orientations 

as well as geometric elements (e.g., symbols, lines, polygons). Although it provides rich 

and comprehensive understanding, it leads to difficulties in finding specific land and 

property information quickly. 

• Fragmentation: Data inside these plans are fragmented and scattered not only across 

multiple sheets but also throughout individual sheets. Although it directs attention to a 

specific portion of the plan’s information, it makes it difficult to follow the content 

coherently and may cause to miss critical land and property information. 

• 2D flat view: Elevation and depth information which is essential for representing the 

vertical dimension is provided by 2D flat viewed diagrams such as crosse-sectional and 

isometric diagrams, leading to ambiguity in terms of visualisation. 



 

• Isolation: Considering two or more land parcels and properties, their own plans are stored 

separately, leading to difficulties to find out their relationships in an integrated 

environment. 

 

 
Figure 1. A Crown plan of a tunnel in the city of Melbourne with its characteristics in static 

PDF format, leading to increasing much cognitive load to understand the content 

 

Overall, a much cognitive load is required to understand the content inside cadastral plans and 

therefore query desired data, especially for less experienced users with less familiarity with the 

content, leading to a reduction in the level of accessibility and usability of these plans. This can 

potentially result in slow and inefficient administrative processes which can lead to unnecessary 

delays, disruptions, and costs within land development projects, particularly in large-scale 

infrastructure projects which deal with numerous land parcels and properties. 

Transforming data from 2D non-machine-readable formats to 3D full digital models based on 

Land Administration Domain Model (LADM), City Geography Markup Language (CityGML), 

and Industry Foundation Classes (IFC), few studies have been conducted for connecting LADM 

and IFC (Atazadeh et al., 2018), integration of LADM and CityGML (Góźdź et al., 2014; Li et 

al., 2016), and 3D-extending the CityGML for underground legal boundaries (Saeidian et al., 

2024). However, the majority of existing registered land and property data have yet to be 

mapped into these newly developed 3D digital models. In Victoria, Australia, although many 

plans have converted to digital records (i.e., LandXML) within the back-capturing process 

under the Digital Cadastre Modernisation program (Land Use Victoria, 2024a), this initiative 

currently does not support multi-story properties (Cumerford, 2010). Considering the process 

of mapping, it is a semi-automated task requiring domain experts and is not usable by non-

specialist stakeholders. In addition, conducting new surveys is both time-consuming and costly, 

and using crowdsourcing approaches may fail in terms of accuracy and heterogeneity. 



 

Applying innovative and efficient ways to enhance the reusability of the existing data can 

potentially benefit stakeholders such as land surveyors and land registries, facilitating access to 

and retrieval of land and property information for different purposes. The new intelligent 

approaches should be able to review the plans quickly and generate query results faster, 

assisting stakeholders to make smarter decisions with reduced cognitive effort. Artificial 

intelligence (AI) has been recognized as one of the operational parameters for advancing land 

administration systems (LASs) (Chehrehbargh et al., 2024). AI has been widely adopted in 

various domains such as geospatial science and has resulted in the emergence of geospatial AI 

(GeoAI). The adoption of AI into land administration, as a subdomain of geospatial science, 

can offer intelligent solutions to overcome traditional approaches within land administration 

practices. By developing AI models, it becomes possible not only to review and query from 

plans directly but also to accelerate their conversion to 3D digital models and hence effective 

data validation, storage, visualisation, and query. This is in line with the future visions defined 

in the Cadastre 2034 initiative which has a vision to enable people to understand their RRRs 

related to land and real property in a survey accurate and 3D environment. The aim of this 

initiative is to achieve a cadastral system which is sustainably managed, truly accessible, easily 

visualised, readily used, fully integrated with broader interests on land and provides a dynamic, 

3D digital representation of real world (ICSM, 2019). 

The main purpose of this paper is to introduce a new AI-based approach to support land 

administration stakeholders in querying land and property data from existing registered 

cadastral plans in an intelligent environment using computer vision and natural language 

processing (NLP). This is expected to increase the efficiency of the document reviewing process 

and assist the stakeholders to conduct land administration tasks with considerably less cognitive 

load. To demonstrate the practical applicability of our approach, an initial prototype of a chatbot 

has been developed and tested in which users can upload a cadastral plan in PDF format and 

ask questions about the plan in a natural language form and receive a response accordingly. 

This serves as a proof of concept, illustrating how AI can transform traditional land 

administration processes, making cadastral plans more accessible and reusable.  

The rest of the paper is organised as follows: Section 2 provides the background relevant to the 

research. In Section 3, the proposed approach is described. In Section 4, an initial prototyping 

and testing has been conducted to examine the feasibility of the proposed AI-based approach 

for querying land and property data. Finally, Section 5 provides discussions and conclusions. 

 

2. BACKGROUND AND RELATED WORK 

 

2.1 Artificial Intelligence 

 

Although AI lacks a universally accepted definition, it is generally recognized as enabling 

machines to replicate different aspects of human intelligence such as reasoning, learning, 

perceiving, communicating, problem-solving, and acting (Russell & Norvig, 2016). This can 

lead to learning from experience, adapting to new situations, and performing human-like tasks 

(Duan et al., 2019). It involves a wide range of techniques that can broadly be categorized into 

rule-based and data-driven paradigms. Reasoning aspect of human intelligence refers to the 

process of human-like logical thinking. Expert systems are popular example of AI 



 

developments related to reasoning aspect in which explicit knowledge in form of encoded if-

then rules is used (Gupta & Nagpal, 2020). As computational power grew, this rigid approach 

has been replaced by data-driven approaches which are based on learning from data. Although 

it has less transparency, it brings more flexibility and adaptability to new situations. Machine 

learning algorithms such as decision trees, random forest (RF), support vector machine (SVM), 

and k-means can be fed with experienced data and be trained and make predictions for new data 

(Zhou, 2021). More advanced, deep learning as a subset of machine learning can extract deep 

patterns from data through its multi-layer neural network (Goodfellow, 2016). Moreover, 

computer vision and natural language processing (NLP) can replicate human cognition aspects 

such as vision and speech. Computer vision can perceive and understand visual information and 

has shown its capabilities for information extraction from imagery data such as plans. On the 

other hand, NLP can potentially understand and generate information in for of human language 

such as textual data (Nishant et al., 2020). Leveraging these techniques, AI offers three main 

capabilities: 1) automation 2) real-time functionality and prediction 3) intelligent decision-

making. 

Optical character recognition (OCR) is a technology used to identify and convert textual data 

form different types of documents, such as scanned papers and PDFs into machine-readable 

format (Memon et al., 2020). OCR for survey plan analysis automates the extraction of textual 

information, such as boundary descriptions, parcel numbers, and surveyor annotations, from 

scanned survey documents. Traditional OCR used pattern recognition techniques and rule-

based approaches but data-driven OCR like those powered by convolutional neural networks 

(CNNs) can handle more complex tasks, such as identifying text in varied fonts, layouts, and 

even handwriting. These systems learn from large datasets and continuously improve their 

accuracy and efficiency through AI models. By converting survey plans into machine-readable 

textual formats, OCR streamlines land tenure documentation. This automation enhances the 

efficiency of land administration tasks, reducing manual data entry and errors. 

Upon extraction of textual information from plans, these raw texts need to be processed to be 

converted into computer-intelligible (i.e., numerical) format (Chen et al., 2022). Moreover, for 

having enhanced communication with the plans, generating new textual data is required. These 

can be done using NLP and large language models (LLM). NLP consists of preprocessing tasks 

for cleaning the text and vectorization of words for converting the text into numerical format. 

Preprocessing consists of several steps as follows: 

• Removing unnecessary data: It refers to removing punctuation, HTML tags, etc. 

• Tokenization: It refers to splitting text into smaller units such as words or sentences. 

• Normalization: It refers to standardizing text by converting all characters to lowercase 

and normalizing spelling. 

• Removing stopwords: It refers to removing words that do not contribute much meaning 

(e.g., the, and, or). 

• Stemming and lemmatization: Stemming refers to reducing words to their base or root 

form and lemmatization refers to mapping words to their dictionary form. 

In order to convert the prepossessed text to machine- readable format, the text needs to be 

converted into numerical format (i.e., vector representation), known as embedding vectors. Bag 

of Words (BoG) (Rani et al., 2022) is a traditional model for word embedding which relies on 

the frequency of word occurrences but lacks contextual awareness, resulting in semantic 



 

inaccuracy. In contrast, Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) 

are predictive models based on learning concept. GloVe captures global context across the 

entire corpus and is more suitable for representing semantic relationships. However, these 

models are static and assign a single vector representation to a word regardless of its context. 

On the other hand, transformer-based word embedding methods such as embeddings from 

language models (ELMo) (Peters et al., 2018), bidirectional encoder representations from 

transformers (BERT) (Devlin, 2018), and generative pretrained transformer (GPT) (Brown, 

2020) excels in contextual embedding in which dynamic vectors as the output adapting to the 

context are generated. These methods are based on transformer architectures which use self-

attention mechanism to achieve a deeper understanding of contextual relationships (Vaswani, 

2017). Self-attention mechanism allows each word to attend to all other words in the sequence 

and generate a set of context-sensitive vectors for each word, enriched with weighted 

information from other words in the sequence. The relevance of tokens to one another is 

quantified through attention scores which is calculated by using the dot product of query and 

key vectors, followed by a softmax operation for normalisation. Considering LLM models for 

generating new textual data related to a given text, the embeddings are updated and refined 

layer by layer within the transformer. Once the sequence has been processed, the new textual 

data is generated by selecting the next word based on the highest probability from the softmax 

output. This new textual data may include summaries or answers to specific queries about the 

input text. 

 

2.2 Related Work 

 

Several studies have been conducted for information extraction from cadastral document. In 

(Lenc et al., 2021), fully convolutional networks (FCNs) has been developed for landmark and 

border line detection combined with traditional image processing techniques like edge detection 

for facilitating the creation of maps from historical documents. Applicability of neural networks 

for effective annotation in historical maps to facilitate their automatic vectorization is discussed 

in (Petitpierre & Guhennec, 2023). In (Lenc et al., 2023), integration of neural networks with 

standard computer vision techniques for the automatic analysis of historical cadastral maps has 

been suggested when little training data are available. In (Mango et al., 2023), line convolution 

neural network (LCNN) and ResNet-50 have been used for detecting parcels and their numbers 

in paper-based cadastral data, respectively. However, it is unable to detect all numbers. In a 

similar study (Marcial et al., 2013), lot numbers have been recognized using artificial neural 

network (ANN) and image processing techniques like binarization. The study achieved an 

average detection rate of 90% for smaller maps and 84.78% for larger maps. 

In (Franken et al., 2021), a data processing platform named VeCToR has been developed that 

combines deep learning algorithms with human validation for high accuracy in the extraction 

of geometric and semantic information from millions of historical field sketches which are 

schematic drawings and different from cadastral plans, aiming to rebuild cadastre maps of 

Netherland. Conversion of AFRs files into LandXML files using OCR process has been 

investigated in (La Rosa & Garrido, 2019). In (Yıldız et al., 2021), a model has been developed 

to automatically digitize the temporal dimension of cadastral parcels using OCR and EAST DL 

text detectors. However, it has challenges with ambiguous texts, light reflections, and blurry 



 

images. Overall, deep learning models can achieve excellent performance in cadastral map 

digitization, but the limited training data is a big challenge, especially for historical maps 

(Ignjatić et al., 2018). 

 

3. PROPOSED AI-BASED APPROACH 

 

Considering the issues associated with 2D survey plans and the transformative solutions that 

AI brings to us, a conceptual framework with an architecture has been introduced which is 

illustrated in Figure 2. The flow begins with user interactions, where users can upload survey 

plans in raster PDF formats. Then they can input queries seeking specific information such as 

depth limitation or distance between two specific points ensuring accessibility and ease of 

communication, regardless of their technical background. Based on the uploaded plans and 

input queries, users can receive a coherent response in natural language. This framework is 

underpinned by two core functionalities: data extraction from plans using computer vision and 

communication with plans using NLP, which are described in the following subsections. 

3.1 Textual and geometric data extraction from plans 

 

Through this functionality, the uploaded plans undergo conversion to an image format such as 

PNG to be prepared for extracting essential data from them. Once the sheets of the plan are 

converted to an image format, key components within each image, such as notations and 

boundaries, need to be identified and segmented using computer vision techniques. In this 

regard, an essential component of the process is the utilization of CNNs, which excel in image 

segmentation tasks by providing a precise and detailed examination of the details present in 

survey plans. These networks perform a thorough and detailed analysis of the various elements 

present in the survey plans, ensuring that all textual and geometric components are captured 

and ready for further analysis. The output is a segmented image in where each pixel is classified 

into distinct categories such as annotation, boundary, and other relevant features. Following the 

segmentation process, textual data within the segmented image regions containing texts are 

extracted and transcribed from image format into machine-readable text using OCR engines. 

This results in raw textual output being stored in a database or in a file format like LandXML. 

Simultaneously, geometric data from the survey plans are extracted and converted into 

structured formats like Geo JavaScript Object Notation (GeoJSON) which leads to representing 

and storing spatial data. Overall, this functionality ensures that both textual and geometric 

information are systematically extracted, stored, and made readily available for further analysis. 

 

3.2 Textual query processing and response generation for users 

 

Through this functionality, interaction between users and plans is enhanced. User queries which 

are in natural language need to be analysed and interpreted in a way that allows machines to 

understand. In this regard, a fine-tuned LLM based on pretrained LLMs such as GPT must be 

applied to handle the queries. In fact, the NLP component bridges the gap between the extracted 

textual and geometric data and the natural language queries submitted by surveyors. LLM, 

specifically trained on a purpose-built dataset of surveyor queries related to survey plans and 

corresponding answers, can potentially accommodate various queries. The queries can be a 



 

straightforward semantic query that its corresponding answer has been explicitly stated within 

the plan (e.g., what is the reduced level of point no. 123?) or more complex spatial query (e.g., 

what is the distance between point no. 123 and no. 124?). 

First, the query is classified to find out whether it is semantic or spatial before accessing the 

structured database. This classification is conducted using supervised learning algorithms. After 

classification, the query is converted to a structured format like JSON to facilitate the retrieval 

of information that has been extracted and stored in a database before. Upon receiving results 

from the database, as these outputs are often presented in a structured format and may not be 

familiar for the user, the information is converted back into a natural language format using the 

fine-tuned LLM, providing a description of the result. Moreover, if the query contains both 

semantic and spatial components, the query is sent to a developed spatial reasoning model to 

perform spatial calculations. This component primarily uses symbolic reasoning such as if-then 

rules and algorithms (e.g., topological operators, metric operators, and directional operators) to 

process structured geometric data and it does not use data-driven approaches. The output might 

be precise spatial measurements or analysis results that can be integrated into the final response 

provided to the user. Finally, the user receives relevant responses. 

 

 
Figure 2. The proposed architecture for design of the prototype  

 

4. INITIAL PROTOTYPING AND TESTING 

 

To prove the concept, an initial prototyping was conducted to test the feasibility of data 

querying from plans that include complex spatial layouts and semantic annotations using AI 

technologies. The prototype took the form of a web-based chatbot developed using Python 



 

programming language in which GPT-3.5-Turbo was employed as the core LLM. To have a 

customized LLM, we utilized retrieval-augmented generation (RAG) techniques, which 

combine generative capabilities with the ability to access external information sources, 

significantly improving the accuracy and relevance of responses in land administration 

scenarios. In this method, the output of a pretrained LLM is optimized by referencing an 

external knowledge base outside of the LLM training data sources before generating a response. 

First, the embeddings vectors of the stored chunks (i.e., paragraphs) are first generated in a pre-

trained LLM. The embedding vector of user’s prompt is first generated and the similarity 

between the user’s prompt and the stored paragraphs’ embedding vector is then calculated to 

retrieve the most relevant contexts. We used cosine similarity method and Oracle database 

containing 1901 paragraphs extracted from scientific papers in different sources such as Land 

Use Policy journal, organizational reports such as FIG and CSDILA reports and papers, and 

governmental publications such as resources in Land Use Victoria and Victorian legislation. 

The most relevant contexts are then combined with user’s prompt and a comprehensive prompt 

is formed as an input for the pretrained LLM. Responses will be generated tailored to land 

administration domain that enhances the responses of the pretrained LLM and reduces the 

occurrence of hallucinations, thereby increasing the models’ credibility. The interface of the 

developed prototype is depicted in Figure 3. It includes a drag-and-drop file upload feature that 

allows users to upload survey plans in PDF format. Also, a textbox is considered that lets users 

type questions related to the uploaded plan and then click the submit button to process the query, 

which triggers the system to extract and interpret relevant information from the plan and 

generates suitable response, which is then displayed the chatbot response textbox, providing 

users with the requested information in real time. 

 

 
Figure 3. The interface of the developed prototype 



 

To evaluate the prototype, it was then tasked with answering targeted questions to test its ability 

to understand semantic content and spatial relationships within survey plans. The performance 

is assessed based on the model’s accuracy/correctness in identifying and interpreting data such 

as boundaries, annotations, and any semantic notes within the survey plans. The testing phase 

used various semantic and spatial queries derived from the Crown plan depicted earlier in 

Figure 1 as a case study. The prototype’s responses were then evaluated and compared against 

the expected results. Several queries were executed on a plan, with specific portions utilized for 

testing, as illustrated in Figure 4. The detailed queries and corresponding responses generated 

by the prototype are shown in Tables 1 and 2. This evaluation highlights the steps necessary to 

achieve greater robustness in real-world applications in processing survey data queries. 

 

 
Figure 4. Some parts of a Crown plan as initial data for testing and evaluation 

 

 

Table 1. Semantic queries and corresponding responses 

Query Response 
Accuracy 

score 

Is this a plan of subdivision 

or a plan of consolidation? 

This document is a plan of subdivision.  The plan shows the 

division of Crown Allotments into smaller parcels.  The 

legend indicates "Crown Allotment" and details of the 

subdivision of those allotments. 

0 

What is the plan number? 

What is the edition of plan? 

What is the number of the 

crown allotment? 

The plan number is OP 119954. The edition of the plan is 3. 

The crown allotment number is Q2. 
100 

What is its city, parish, and 

country? 

The plan shows the City of Melbourne and the City of 

Richmond, Parishes of Melbourne South, Melbourne North, 
100 



 

and Jika Jika, all located in the County of Bourke.  The 

country is not explicitly stated on the plan, but given the 

other details, it's implied to be Australia. 

Which datum is used for 

reduced level? 
The Australian Height Datum is used for the reduced levels. 100 

Who is the Licensed 

Surveyor? 

Neil W Street of 437 St Kilda Road, Melbourne is the 

Licensed Surveyor. 
100 

Who is the Surveyor-

General? 
P. Williams is the Surveyor-General. 0 

Who is the examiner? P. Williams examined the plan. 100 

On what date was it signed, 

and by whom? 
The plan was signed on July 3, 2002, by Neil W. Street. 50 

What is the scale of the 

map? 

The main plan scale is 1:3000. There are also details at 

scales of 1:500, 1:1000, and 1:750 and 1:10. One vertical 

section is at 1:5000 and another is at 1:5500. 

100 

What does CH mean in the 

legend abbreviation? 
CH stands for Chainage along the Highway Centre Line. 100 

How is the parcel shown? The parcel is shown by continuous thick lines. 100 

What is the CAD file 

number of sheet 2? 
The CAD file number for Sheet 2 is SGLA5228. 100 

How many sheets does it 

have? 

The plan consists of 19 sheets. There is also a modification 

table as a 20th sheet. 
100 

How many abbreviations 

are there in the legend? 
There are eight abbreviations in the legend. 0 

 

Table 2. Spatial queries and corresponding responses 

Query Response 
Accuracy 

score 

What are the coordinates of 

point numbers 17 and 19? 

Point 17: E 321761.289, N 5811548.400, RL -16.601 

Point 19: E 321775.778, N 5811548.505, RL -38.372 

50 

(Do not have 

RL) 

What is the distance 

between point numbers 17 

and 19? 

I cannot calculate the precise distance between points 17 

and 19. While the Easting and Northing coordinates are 

provided, I lack the information necessary to perform a 

coordinate transformation to accurately compute the 

distance in meters. This would require knowing the map 

projection used (e.g., UTM, State Plane) and potentially 

applying a more complex calculation than a simple 

Euclidean distance. To obtain the distance, you would need 

to use a Geographic Information System (GIS) or 

specialized software that incorporates the necessary 

projection information. 

Can not 

Which points have the 

vertical dimension within 

their coordinates? 

The points listed in the coordinate table on Sheet 18 and 

Sheet 19 include a "RL" value alongside their Easting and 

Northing coordinates. "RL" stands for Reduced Level, which 

represents the vertical dimension (elevation). Therefore, all 

the points listed in those tables (points 1 through 172) have 

a vertical dimension included in their coordinate 

information. 

0 

What is the RL of point 

number 1? 
The RL of point number 1 is -5.398. 0 



 

Tell me which point have 

RL? 

I cannot definitively identify which points have RL values 

without a more thorough and systematic review of the tables 

on sheets 18 and 19. The OCR results are not perfectly clean 

and may have missed some RL values, or they may be 

inconsistently formatted. A manual inspection of the original 

scanned document is required to confirm which points 

include RL data. 

Can not 

Is point number 59 a VC or 

TP? 
Point number 59 is a VC (Vertical Curve Tangent Point). 100 

Which type of map scale is 

used? Linear or ratio? 

The map uses a ratio scale. A ratio scale (also called a 

representative fraction) expresses the scale as a ratio, such 

as 1:3000, meaning one unit on the map represents 3000 

units on the ground. This is different from a linear scale 

which uses a visual bar to show the scale. While the 

document includes a linear representation of the scale, the 

fundamental scale used is expressed as a ratio. 

50 

(It is not 

correct for the 

scale on the 

right side of 

the sheets) 

What does DETAIL 4 

show? 

DETAIL 4 shows a cross-section view of a portion of the 

highway and surrounding area, focusing on the area around 

point numbers 113-117. It highlights the relationship 

between the highway, the natural surface level, and other 

details of the subsurface. The detail drawing provides 

measurements and levels relevant to this specific part of the 

project. 

0 

Is DETAIL 4 a horizontal 

map or vertical? 

DETAIL 4 is a vertical cross-section. It shows a slice 

through the earth, revealing the vertical relationships 

between the highway, the ground surface, and other features 

at that location. It's not a horizontal plan view which would 

show the spatial layout from above. 

0 

Is SECTION A/1 a 

horizontal map or vertical? 

SECTION A/1 is a vertical cross-section. The drawings 

labelled "SECTION" in this document are all vertical cross-

sections showing subsurface details and elevations, not 

horizontal plan views. 

100 

How many points are 

observed in DETAIL 3? 

DETAIL 3 shows seven numbered points: 153, 154, 155, 

157, 161, 163, and 165. 
0 

How many parcels are 

there? 

Crown Allotment Q2 

Crown Allotments 5 & 6, Section 19D 

Crown Allotment 5C 

Crown Allotment 1A, Section 39A 

0 

Is there any easement 

within this plan? 

The provided document does not explicitly mention 

easements. While the plans show various features and 

boundaries, there is no text or notation that clearly indicates 

the presence of easements. To determine whether easements 

exist, you would need to consult additional documentation 

related to the land title or other legal records associated 

with these parcels. 

Can not 

Where is the boundary of 

parcel Q2? 

The boundary of parcel Q2 is shown as a thick continuous 

line on the provided maps, encompassing an area that 

extends along the Yarra River. The exact coordinates of the 

boundary are not explicitly listed, but the boundary is 

defined by the series of points and curves shown on sheets 1, 

2, 3, 4 and 5. The boundary follows both sides of the Yarra 

River and is impacted by the highway (as the parcel is a 

stratum of crown land). 

0 

(Only in sheet 

1) 



 

With which points does 

Crown Allotment Q2 

intersect? Please list the 

points that define its 

perimeter. 

I cannot provide a complete list of points defining Parcel 

Q2's perimeter. The maps are complex, and a precise 

identification requires a manual inspection of the drawings 

themselves. The OCR data provides the coordinates of many 

points but does not explicitly connect those points to Parcel 

Q2's boundary in every case. To create the complete list, one 

would need to manually trace the boundary line on the maps 

and note the numbers of the points it passes through. 

Can not 

 

5. DISCUSSION AND CONCLUSION 

 

In this paper, a novel method based on AI as an emerging technology has been proposed for 

retrieving information from cadastral plans, aiming at overcoming limitations associated with 

the plans, such as fragmentation, and hence decreasing high cognitive load associated with 

traditional manual analysis. Our proposed framework addresses the challenges by leveraging 

cutting-edge AI technologies, specifically computer vision techniques for image processing, 

OCR for text extraction from the plans, and NLP and LLMs to facilitate query processing and 

response generation. This approach significantly streamlines the data access and allows quick 

retrieval of information from cadastral plans. 

Results from the initial testing phase show that the developed prototype can effectively handle 

semantic queries explicitly defined within the plans. However, more extensive fine-tuning is 

needed to enhance LLMs’ capabilities in handling land administration domain-specific queries. 

Moreover, the performance of the prototype decreased when dealing with spatial queries. While 

it could extract spatial coordinates of points, it cannot perform the necessary spatial calculations 

or contextual understanding to provide meaningful spatial insights. This indicates a need for 

employing spatial analysis tools to provide the chatbot with accurate spatial reasoning. In 

summary, the prototype demonstrates potential for automating document analysis, especially 

for simple fact-extraction tasks. However, improvements are needed to enhance the chatbot’s 

ability to understand implicit information and infer relationships between different parts of the 

document which can potentially lead to more accurate and complete responses. 

Regarding improvement of the current state, high-quality data is required for training 

algorithms to make accurate predictions within different components of the prototype which is 

a critical area for future research. High-quality data leads to ensure the developed AI models 

can recognise and interpret various textual and geometric elements within these plans, such as 

legal boundaries, survey observations, and administrative information. Moreover, the 

performance of the models in handling new situations in different survey use cases is 

significantly related to the diversity of the datasets and various land administration concepts 

such as legal boundaries and spaces, survey measurements, and land administration 

terminologies must be clarified. Hence, standardized data and processing protocols are required 

to create larger, more consistent, and comprehensively annotated datasets for model training. 

Additionally, to address data privacy concerns, we propose to use on-device LLMs, such as 

Llama, instead of cloud-based alternatives like GPT. By addressing these challenges and further 

developing the prototype, the efficiency and effectiveness of survey information retrieval can 

be dramatically improved, leading to enhance the robustness of AI-driven solutions for land 

administration purposes. 
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