
  
 
 
APPLICATION OF A MULTI-PARAMETER TRANSFORMATION FOR 

DEFORMATION MONITORING OF A LARGE STRUCTURE 
 

Bill Teskey and Bijoy Paul 
Department of Geomatics Engineering, University of Calgary, Alberta, CANADA 

Email: wteskey@ucalgary.ca, bpaul@ucalgary.ca 
 

Bill. Lovse 
Terramatic Technologies Inc., Calgary, Alberta, CANADA 

Email: b.lovse@terramatic.com 
 
 
 

Abstract: A new methodology for deformation monitoring is applied to a large structure. The 
mathematical model for the new methodology utilizes a multi-parameter transformation 
relating original and repeated observations between an instrument station and any number of 
target points. The mathematical model is applied to original and repeated reflectorless total 
station observations made to target points in the roof of the Olympic Speedskating Oval in 
Calgary. (The Olympic Oval roof structure, with an unsupported roof span of approximately 
80m by 200m, is one of the largest of its type in the world.) Results from this application 
indicate that the new methodology is very effective for deformation monitoring. Future work 
will include application of the new methodology to original and repeated three-dimensional 
laser scanner observations. The challenge with laser scanner observations (point clouds) is to 
match identical features in original and repeated point clouds. Recent research work in least 
squares orthogonal distance fitting of curves and surfaces in space may offer a solution to this 
problem. 
 
 

1. Introduction 
A new methodology for deformation monitoring is investigated by applying it to a large 
structure. The mathematical model for the new methodology is described in Section 2. 
Application of the new methodology, through an analysis of original and repeated 
reflectorless total station observations to target points on a large roof structure, is described in 
Section 3. A strategy for applying the new methodology to original and repeated three-
dimensional laser scanner observations, is outlined in Section 4. 

 

2. Mathematical Model  
The mathematical model for the new methodology utilizes an multi-parameter transformation 
relating original and repeated observations between an instrument station (e.g. total station or 
three-dimensional laser scanner) and any number of target points. The transformation consists 
of a 6-parameter similarity transformation at the instrument station (translations in the X-, Y- 
and Z-directions at the instrument station, and rotations about the X-, Y- and Z-axes at the 
instrument station), plus a scale factor relating original and repeated instrument-target slope 
distance observations (or derived slope distance observations), plus a refraction correction 
between original and repeated zenith angle observations (or derived zenith angle 
observations). 
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This mathematical model can be expressed as follows: 

     XO= λ(XR + κYR – φZR) + Tx                                                                                              (1) 

     YO = λ(-κXR + YR + ωZR) + Ty                                                                                                                           (2) 

     ZO= λ(φXR – ωYR + ZR) + Tz                                                                                              (3) 

withXR = SRsinHRsin(VR + (∆R)SR)                                                                                        (4) 

        YR= SRcosHRsin(VR + (∆R)SR)                                                                                        (5) 

        ZR = SRcos(VR + (∆R)SR)                                                                                                 (6) 

        XO= SOsinHOsinVO                                                                                                           (7) 

        YO= SOcosHOsinVO                                                                                                          (8) 

        ZO= SOcosVO                                                                                                                    (9) 

in which HO, VO and SO are original horizontal circle, vertical circle (zenith angle) and slope     

               distance observations (or derived observations) respectively; 

                HR, VR and SR are repeated horizontal circle, vertical circle (zenith angle) and slope     

               distance observations (or derived observations) respectively; 

                XO, YO and ZO are X-, Y- and Z-coordinates computed from the original  

                observations; 

                XR, YR and ZR are X-, Y- and Z-coordinates computed from the repeated  

                observations; 

                Tx, Ty and Tz are X-, Y- and Z-translations respectively at the instrument station; 

                ω, φ and κ are rotations about the X-, Y- and Z-axes respectively at the instrument  

                station; 

                λ is the scale factor relating original and repeated slope distance observations; and , 

                ∆R is the refraction correction (in arc seconds per metre of slope distance; see 

                reference [6]) relating original and repeated zenith angle observations (or derived  

                observations).     

The set of equations (1) through (9) inclusive can be solved as an implicit nonlinear least 
squares adjustment to obtain the transformation parameters ω, φ, κ, Tx, Ty, Tz, λ and ∆R; 
corrected observations HO, VO, SO, HR, VR and SR to each target point; and movements (XT - 
XO), (YT -YO) and (ZT - ZO) of each target point.( XT, YT and ZT are transformed X-, Y- and 
Z-coordinates as given by the right-hand-sides of Equations (1), (2) and (3) respectively.) 

3. Application of the Multi-Parameter Transformation: Olympic Oval Roof 

3.1   Background 
The Olympic Speedskating Oval in Calgary is a very large, uniquely designed structure. It 
was built for the 1988 Winter Olympics. The Olympic Oval roof structure, with an 
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unsupported span of approximately 80m by 200m, is one of the largest of its type in the 
world. 
 
The roof structure of the Olympic Oval consists of 84 interconnected hollow-core beam 
columns. The external cross section of the beam columns is approximately 1m wide by 2m 
deep. The roof structure is hinged at the tops of buttressed columns, with both the columns 
and buttresses founded on concrete piles. The columns are approximately 1.5m in diameter 
and the buttresses are approximately 1.5m wide by 2m deep. Fig. 1(a) shows a cross section 
through the Olympic Oval and Fig. 1(b) shows the west elevation. 
 

 
Figure 1 – Olympic Oval, Calgary 

 

The Olympic Oval has experienced both short-term and long-term deformations. The short-
term deformations (deformations occurring as soon as the load is applied) are due to: 
 
1. Dead weight load of the structure itself. 
2. Snow load on the structure. 
3. Wind load on the structure. 
4. Temperature changes in the structure. 

 
The long-term deformations are due to: 
1. Shrinkage of the concrete. 
2. Creep of the concrete and soil (progressively smaller deformations occurring over a 

period of time under constant loading conditions). 
3. Changes in soil stiffness because of variations in moisture content of the soil. 

 
The first deformations of interest (those due to the dead weight load of the roof structure) 
occurred when the roof structure was lowered onto the buttressed column substructure in June 
1986. An analysis of these deformations is summarized in [7]. Deformations of interest which 
occurred after the June 1986 dead weight load deformations were those due to creep and 
shrinkage of the concrete in the roof beam columns. An analysis of these deformations is also 
summarized in [7]. 
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3.2   Deformation Monitoring 
In recent years, the only significant deformations in the Olympic Oval are vertical movements 
of the roof structure caused by seasonal temperature variations. A detailed analysis of these 
deformations is given in [7].   

 
 

Figure 2 – Plan View of Olympic Oval Roof 

 
Based on the known seasonal movement of the Olympic Oval roof structure, it was planned to 
apply the multi-parameter transformation to an epoch of original observations made in July 
2005 (outside temperature about +30 degrees Celcius) and an epoch of repeated observations 
made in January 2006 (outside temperature about -30 degrees Celcius). Unfortunately, 
January 2006 and the first two weeks of February 2006 were unseasonably warm. It was 
therefore decided to apply the multi-parameter transformation to two other epochs of 
observations (original and repeated), one made on July 4, 2005 and the other made on July 6, 
2005. 

A small subset of  original and repeated reflectorless total station observations are shown in 
Table 1, with horizontal circle observations denoted as H, vertical circle observations denoted 
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as V, and slope distance observations denoted as S. These observations were made from the 
floor of the Olympic Oval at point 201 to roof points 5, 10, 15, 20, 25 and 30; see Figure 2. 
The measurements were made with a Leica TCR 803 reflectorless total station. Estimated 
standard deviations of the total station observations are +/- 2 arc seconds for horizontal and 
vertical circle observations, and +/- 2mm for slope distance observations. 

 

Roof Point H(dms) V(dms) S(m) 

    

5/Original 351-28-49 80-48-41 87.301 

5/Repeated 351-28-58 80-47-19 87.306 

    

10/Original 348-59-35 75-20-55 74.825 

10/Repeated 348-59-47 75-19-24 74.834 

    

15/Original 344-45-39 68-19-00 56.956 

15/Repeated 344-45-48 68-17-01 56.969 

    

20/Original 337-09-55 60-41-26 42.816 

20/Repeated 337-10-07 60-39-04 42.833 

    

25/Original 314-51-44 46-47-26 30.629 

25/Repeated 314-51-50 46-44-31 30.653 

    

30/Original 260-28-12 38-41-27 26.858 

30/Repeated 260-28-16 38-38-44 26.885 

 

Table 1 – Reflectorless Total Station Observations to Olympic Oval Roof Points 

 

3.3   Analysis and Results 
The mathematical model described in Section 2 was used to recover the deformations. In this 
application, rotations ω and φ were set to zero because the total station has dual axis 
compensation. Translations Tx and Ty were also set to zero because the total station was 
centered over the same point for original and repeated observations. Scale factor λ and 
refraction correction ∆R were dealt with as free parameters since one could reasonably expect 
different atmospheric conditions on July 4 and July 6. Rotation κ was dealt with as a free 
parameter to allow rotation in the horizontal plane.  
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The results from the application of the mathematical model to recover movements are shown 
in Tables 2a, 2b and 2c. These results show that the movement of the roof points (zero 
movement) was recovered by the mathematical model described in Section 2. 

 

 

Location Movement(mm) Stn Dev(mm) Significant ? 

Roof Point 5 (ZT - ZO) = + 0.2  +/- 0.3 No 

Roof Point 10 (ZT – ZO) = - 0.3 +/- 0.3 No 

Roof Point 15 (ZT – ZO) = + 0.4   +/- 0.3 No 

Roof Point 20 (ZT – ZO) = - 0.3 +/- 0.2 No 

Roof Point 25 (ZT - ZO) = + 0.3  +/- 0.3 No 

Roof Point 30 (ZT - ZO) = - 0.3 +/- 0.3 No 

 

Table 2a – Recovered Z-Movements, Olympic Oval 

 

Location Movement(mm) Stn Dev(mm) Significant ? 

Roof Point 5 (XT - XO) = + 0.1  +/- 0.2 No 

Roof Point 10 (XT – XO) = + 0.1 +/- 0.2 No 

Roof Point 15 (XT – XO) = - 0.4   +/- 0.2 No 

Roof Point 20 (XT – XO) = + 0.1 +/- 0.2 No 

Roof Point 25 (XT - XO) = + 0.1  +/- 0.2 No 

Roof Point 30 (XT - XO) = + 0.1 +/- 0.2 No 

 

Table 2b – Recovered X-Movements, Olympic Oval 

 

Location Movement(mm) Stn Dev(mm) Significant ? 

Roof Point 5 (YT - YO) = + 0.2  +/- 0.4 No 

Roof Point 10 (YT – YO) = - 0.3 +/- 0.4 No 

Roof Point 15 (YT – YO) = + 0.4   +/- 0.4 No 

Roof Point 20 (YT – YO) = - 0.3 +/- 0.3 No 

Roof Point 25 (YT - YO) = + 0.3  +/- 0.3 No 

Roof Point 30 (YT - YO) = - 0.3 +/- 0.3 No 

 

Table 2c – Recovered Y-Movements, Olympic Oval 

3rd IAG / 12th FIG Symposium, Baden, May 22-24, 2006



  
 
 
 
 

4. Strategy for Applying Multi-Parameter Transformation to Laser Scanner  

     Observations 

 

4.1   Work to Date 

 
Results from the application of the multi-parameter transformation to planned three-
dimensional laser scanner observations in a typical industrial survey application (see Figure 3) 
are shown in Table 3 and reported in [8]. Estimated standard deviations of laser scanner 
observations (+/- 5 arc seconds and +/- 1 mm) are given in [4] and [5]. 

The problem with this analysis is that points R1 to R18 inclusive in Figure 3 must be circular 
or spherical target points. In an actual application it would be far too time-consuming to set 
these points each time observations were made. 

 

 

 

 
Figure 3 – Plan View of Location of Target Points at Indoor Industrial Site 
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Location Standard Deviation of 
Movement(mm or arcsecs) 

Standard Deviation of 
Mean Position(mm) 

Machine Point M1 (XT - XO): +/- 0.14 (XT + XO)/2: +/- 0.07 

Machine Point M1 (YT -YO): +/- 0.24 (YT +YO)/2: +/- 0.12 

Machine Point M1 (ZT - ZO): +/- 0.36 (ZT + ZO)/2: +/- 0.18 

Machine Point M2 (XT - XO): +/- 0.14 (XT + XO)/2: +/- 0.07 

Machine Point M2 (YT -YO): +/- 0.24 (YT +YO)/2: +/- 0.12 

Machine Point M2 (ZT - ZO): +/- 0.36 (ZT + ZO)/2: +/- 0.18 

Laser Scanner ω: +/- 2.6 --- 

Laser Scanner φ: +/- 5.3 --- 

Laser Scanner κ: +/- 2.7 --- 

Laser Scanner Tx: +/- 0.07 --- 

Laser Scanner Ty: +/- 0.12 --- 

Laser Scanner Tz: +/- 0.18 --- 

 

Table 3 – Standard Deviations of Movements and Mean Positions, 

Indoor Industrial Site 

 

4.2   Strategy 
The strategy to overcome the problem described in Section 4.1 is to match identical features 
in original and repeated laser scanner observations (point clouds). For man-made structures, 
the intersection of three or more angular surfaces might work well [3]. For natural structures, 
generation of virtual points of maximum curvature may be the only alternative. Recent 
research work in least squares orthogonal distance fitting of surfaces in space [1] [2] provides 
information on how virtual points of identical natural features might be generated. 

 

5. Conclusion  
The results indicate that the new methodology is very effective for deformation monitoring 
utilizing reflectorless total station observations. The new methodology for deformation 
monitoring should also be very effective utilizing three-dimensional laser scanner 
observations, once some interesting technical challenges are overcome.  

3rd IAG / 12th FIG Symposium, Baden, May 22-24, 2006



  
 
 
 
Acknowledgements 

The authors would like to thank Kameron Kiland for arranging access to the Olympic Oval 
facility. The authors also wish to acknowledge Dr. Robert Radovanovic who works closely 
with us in our high-precision industrial surveys research. 

 

References 
 
[1]     Ahn, S. J. (2004). “Least Squares orthogonal Distance Fitting of Curves and Surfaces in 

Space”, Lecture Notes in Computer Science, Springer, Berlin, 128pp. 
 
[2]     Akca, D. and Gruen, A. (2005). “Recent Advances in Least Squares Surface Matching”, 
         Proceedings of Optical 3D Measurement Techniques VII, Vienna, October 3-5,  
         Vol. II, pp. 197-206. 
 
[3]     Lindenbergh, R. and Pfeifer, N. (2005).”A Statistical Deformation Analysis of Two 
          Epochs of Terrestrial Laser Scanner Data of a Lock”, Proceedings of Optical 3D 
          Measurement Techniques VII, Vienna, October 3-5, Vol. II, pp. 61-70.      
     
[4]     Mensi (2004). “GS200 Declaration of Conformity”, Mensi 3D Surveying Products,  
          Fontenay-Sous-Bois, France, 3 pp. 
     
[5]     Rueger, J. M. (2003). “Electronic Surveying Instruments”, Monograph 18, School of   
          Surveying and Spatial Information Systems, The University of New South Wales,     
          Sydney, 155 pp. 
 
[6]     Rueger, J. M. (1993). “Monitoring of Slope Movements Using Electronic Distance     
          Measurements and Precision Theodolites”, Proceedings of the 35th Australian 
          Surveyors’ Congress, pp. 19-38. 
  
[7]     Teskey, W. F., Radovanovic, R. S., Paul, B. and Brazeal, R. G. (2004). “Measurement      
          of Temperature-Induced Deformations in a Large Roof Structure”, Proceedings of the     
          1st International FIG Symposium on Engineering Surveys for Construction Works and  
          Structural Engineering, Nottingham, United Kingdom, June 28 – July 1, 15 pp. 
 
[8]     Teskey, W.F., Paul B. and Lovse, J.W. (2005). “New Instrumentation and Methodology 
          for Deformation Monitoring”, Proceedings of the 7th Conference on Optical 3-D 
          Measurement Techniques”, Vienna, October 3-5, 9 pp. 
  
      
 

3rd IAG / 12th FIG Symposium, Baden, May 22-24, 2006


