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Abstract: The LHC (Large Hadron Collider) project includes the construction of four large 
physics experiments, which will study particle collisions. The particle detectors that are made 
up of many parts need to be precisely positioned with respect to the accelerator beam line. 
The metrological networks to accomplish this task are in difficult configurations. Control and 
thus reliability degrade as detector installation progresses. Additionally, deformations of the 
structural parts of the experimental caverns are to be expected which will affect the networks 
and need to be monitored closely. As part of the installation process the network will be 
regularly measured in parts, including different types of measurements, but complete network 
measurements will be very rare. Good network configuration and reliability at early stages of 
the installation process need to be fully taken advantage of. This implies a good preliminary 
estimation of possible point movements. This knowledge could be utilized in later stages 
when network configuration and reliability will degrade. Another source of information about 
the network is empirical knowledge how the network points might deform depending on their 
location. This information could also be considered into the network calculations in order to 
support its solution. To treat these problems with classical deformation methods based on 
epoch-to-epoch congruency comparison poses several problems in application.  A practical 
and easier to handle solution is the implementation of a kinematic model by an adaptive 
Kalman filter. In this paper we will present a special implementation of an adaptive Kalman 
Filter which is able to take full advantage of any measurement occurring in the cavern 
network context and to manage and maintain accuracy and reliability demands for the detector 
installation and operation. 

1. Introduction 
The European Organization for Nuclear Research (CERN – Centre Européen pour la 
Recherche Nucléaire) is currently concentrating on the construction and installation of the 
new particle accelerator LHC (Large Hadron Collider). In order to study elementary particle 
physics four large high energy physics experiments have been installed along the accelerator 
beam line, each with different physics objectives and detector designs. These experiments 
have been installed partly in already existent underground caverns, but for the two largest 
experiments ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) 
extensive excavation work had been necessary. 

A particle detector consists of various detector systems which again comprise many parts. All 
these parts have to be positioned accurately with respect to each other and the total of the 
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detector accurately positioned with respect to the accelerator beam line. Geometrical networks 
have been installed in order to support and control this process. Although the caverns are of 
considerable dimensions (e.g. ATLAS 53 x 30 x 35m, cavern floor ~92m below ground, see 
Fig. 1), space for survey work is restricted and limitations apply to network configurations. 

Underground openings in such a dimension cannot be expected to be stable over a long time 
period. Deformation will occur and will affect the geometrical relation between the LHC 
tunnel and the experimental caverns and thus between accelerator beam line and detector.  

 

Figure 1: ATLAS detector installation at LHC Point 1, [1] 

It is inevitable that the network configuration will degrade with progressing installation. In the 
beginning a cavern is empty and only few limitations on measurement configurations apply. 
Once infrastructure and detector installation commence many obstacles restrict sightings, thus 
less possible measurements can be carried out, which means poorer control of the 
measurements. Reliability in the network decreases which is unacceptable in order to 
continuously support and control detector installation accurately. It is obvious that the 
configuration of measurements in such a network will rarely be the same even twice. 

Thus two major problems for the survey work to support and control detector installation in 
the cavern have to be faced: One is the deformation of the cavern directly affecting the 
network’s stability. Secondly, geometrical limitations increase as installation progresses 
causing the network’s reliability to degrade. Nevertheless, it is necessary to maintain a high 
level of reliability. In order to solve these two problems in one common approach an 
algorithm employing an adaptive Kalman Filter applied to a kinematic 3D network is 
proposed. 

2. Algorithm 

The Kalman Filter (KF) as a recursive minimum mean-square error (MMSE) estimation 
algorithm has been extensively used ever since its first formulation. This is also true for 
applications in the geodetic field, most prominently in the field of navigation. Its application 
to deformation measurements has been introduced in several publications, e.g. [6]&[3]. 
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2.1. Kinematic network 
A network is commonly assumed stable over time and deformation occurring only locally 
and/or exceptionally. For the task at hand we interpret a metrological network as a time-
variable system. This system is subject to generally small, creeping changes and only 
exceptionally to large and sudden changes. Causes of these deformations are in general not 
sufficiently well known to derive a clear relationship. Instead of detecting the actual amount 
of deformation and make a distinct separation between changing and stable points, the main 
objective in this approach has to be to maintain the necessary level of reliability in the 
network. All points are considered as changing and the amount by which they change is 
estimated. 

In the context of deformation models the approach chosen here can be categorized as a 
descriptive model, as causes for deformation or points movements are generally not known 
and no cause-response model can be established, [7]. Point variations are modelled as 
function of time, which gives a kinematic model. 

To model the system of a deforming, three-dimensional geodetic network we set up system 
equations for an unforced, uniformly accelerated motion. Higher order terms of motion are 
considered as system noise and are thus not explicitly modeled, [6]. The differential equation 
reads: 

0wxwx =−= )()();()( tttt &&&&&& , where ( )tx  is position and ( )tw  is random noise. (1) 

This yields after integration over ( )1−−=Δ ii ttt : 

( ) ( ) ( ) ( ) ( ) )(
2
1)( 11

2
1111 −−−−−− +⋅−⋅+⋅−+= iiiiiiiii ttttttttt wxxxx &&& . (2) 

From this expression we derive in the following the system model for the treatment of 
geodetic network measurements in a Kalman Filtering process. 

2.2. Kalman Filter for geodetic network 
The KF system equation is obtained as: 

( ) ( ) 11|11| 1ˆ1,ˆ −−−− ⋅−+⋅−= iiiii iii wΓxΦx , (3) 

where 1|ˆ −iix represents the state variable estimate at time i based on measurement information 
up to including time i-1, whereas 1|1ˆ −− iix  is the updated state at time i-1, i.e. the estimate at 
time i-1, based on measurement data up to including time i-1. ( )1, −iiΦ  is the transition 
matrix, ( )1−iΓ  is the noise matrix. 

The measurement equation reads: 

iiii vxHz +⋅= , (4) 

where iz  contains the measurement data for time i, iH represents the linear observation 
equations and iv  describes the measurement noise. 

The system noise 1−iw  and measurement noise iv  describe model disturbances and noise 
corruption that affect the system, but also uncertainty about the model. They are characterized 
as follows: 
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The KF formulation is summarized in Fig. 2, see also [2]. A discrete formulation is chosen as 
measurement data in geodetic applications are discrete i.e. sampled at different instances in 
time. 

 

Figure 2: Kalman Filter formulation 

2.2.1. Setup KF terms for kinematic 3D network 

The state vector x  is to be interpreted as a composite: It contains for each point in the 3D 
network position coordinate components, velocity coordinate components and acceleration 
coordinate components. The system transition matrix ( )1, −iiΦ  describes the system model 
i.e. kinematic point description derived from the original differential equation in (2): 
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For the application of a geodetic network the matrix of linear/ linearized observation 
equations has only entries for the ‘position states’: 

[ ] [ ]00HHHHH posiacciveliposii ____ ==  (7) 

It can be shown that although only position states are observed by the measurements, also 
velocities and accelerations can be estimated in this algorithmic approach, [5]. 
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2.3. Adaptive KF 
The KF needs to adapt to deformations in the network, which are not known before and 
which are likely to change over time. The system description includes a certain level of 
uncertainty, the KF algorithm is thus able to let the estimates adapt within this uncertainty’s 
range. So, if we expect deformation, the system uncertainty should be large enough to let the 
system adapt to a new situation, on the other hand, if we know that there is no deformation, 
we want the system uncertainty to be fairly small, not to degrade the already good state 
estimation. Thus the idea is to set the a priori system uncertainty fairly small and to let the KF 
determine itself, when system uncertainty has to be increased or not, based on the comparison 
between new measurement data and the system (i.e. the innovation analysis). 

The motivation for any adaptive filter is the need to correctly identify unknown parameters in 
the stochastic model of the KF. This is done by analyzing the mismatch between the 
measurement data and the current system description, i.e. the innovation. Various adaptive 
methods exist. Commonly used autocorrelation methods applied to innovations are unlikely to 
give conclusive results in the application of a geodetic network. This is due to the small and 
incomplete data sample sizes and thus poor statistics. A less demanding but also less 
conclusive method is referred to as stochastic stabilization: Only the system noise variance is 
considered unknown (a correct stochastic model for measurement data is imperative). Its 
difficult direct derivation is compensated by an iterative increase of the noise variance (i.e. 
variance inflation) until the system has sufficiently adapted to incorporate new information, 
which 'stabilizes' the filter. 

The adaptive filter is based on the innovation representing the mismatch between actual 
measurements and the best available prediction based on the system model and previous 
measurement data:  

( )1|ˆ −−= iiiii xHzd . (8) 

2.3.1. The global model test 

To decide when adaption is necessary, the innovation property, [4] is used: 

{ } 0=⋅ T
jiE dd   for ji ≠ . (9) 

If the optimal gain iK has been found no information is contained in the innovation. Its mean 
and covariance are: 
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The innovation is considered to be a gaussian distributed variable, 

( )ii Ν D0d ,~ . (11) 

Thus we can define a test term 2
idΩ under the assumption of no significant innovation 
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If the null hypothesis of the global model test (13) is rejected with a significance level of α, 
the observations carry information new to the system, which needs to be changed. 

2.3.2. Localization 

The test statistic for the global test in (12) is based on innovations, thus in the 'domain' of the 
measurements. The term to be changed to let the filter adapt is the system noise which 
describes uncertainties in the system state variables. If the global test indicates a significant 
mismatch between new observation data and the system we need to localize the source of this 
mismatch in the domain of the state variables. To achieve this we need to find a test term 
equivalent to expression (12) but in the state 'domain'. 

The innovation is related to the state by the gain matrix, (see update equation in Fig. 2). The 
term ii dK ⋅  represents an incremental update to the state and has properties equivalent to 
those of the innovation: 

iii dKvx ⋅=, . (14) 

The corresponding covariance matrix is given by: 
T
iiii

KDKP
xv ⋅⋅=

,
. (15) 

If equation (11) is valid it can be likewise said that 

( )
i

Νi ,
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Thus the test statistic from expression (12) can be reformulated into: 
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In order to localize the reason for the mismatch between the system and the measurement data 
indicated by the global test, state parameter(s) which cause the mismatch have to be 
identified. The entries of the state and thus of i,xv can be grouped into a vector corresponding 
to the 3D point j they describe, i.e. variables for position, velocity and acceleration for point j. 
Thus test statistics 2

_, jixvΩ  for each individual point j can be derived, [5] and it has to be 
decided, how to proceed in the algorithm in order to let the filter adapt to the new 
information. In case only one point would be suspected to have caused the mismatch between 
the system and measurement data, a classical outlier detection approach could be chosen, by 
changing the system noise information for this point and iterate the calculation. But as in 
classical outlier detection this method is prone to error if more than one item is suspected to 
have caused the significant test term. Similar to an approach presented in [8] we propose a 
slightly modified method which is considered to be more robust. 

For each point j we derive the test term 2
h,-1

2

_
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Stochastic stabilization is achieved by applying the following changes to the system noise 
error definition: 
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which implies that all points with a significant test statistic are down-weighted. As the process 
is iterated until no significant mismatch between the measurement data and the system is 
indicated, points experiencing large position changes can change their state estimates 
correspondingly, but likewise the uncertainty in the state estimate increases. 

 

Figure 3: Adaptive Kalman Filter – Stochastic Stabilization 

2.4. Including additional information in KF 
The result of a KF is a function of observation data, thus as much observation information as 
possible should be included. In deformation applications often some kind of empiric 
knowledge about the probable deformation characteristics exists, (e.g. points on the cavern 
floor are expected to move mostly in vertical direction). But very often this information can 
not be quantified or modelled in a classical sense (cause-response model). Including this kind 
of information with suitable stochastic information can support the KF estimation process, 
particularly in difficult observation configurations as in the example of an experiment cavern. 

Formulating conditions or constraints on the estimation parameters to be included in the 
parameter adjustment is a commonly used technique in geodetic applications. The conditions 
are cast into so called 'virtual' observations. A simple example of such a constraint applied to 
a deformation adjustment in KF formulation is a soft datum definition: As observations serve 
the known coordinates of datum points. Applied to the kinematic model implemented in the 
KF the soft datum constraint can be imposed on the position states, but also constraints on the 
velocity and acceleration states can be imposed, e.g. 0xx == accvel . Relationships between 
point movements can be also modelled in this way, if, for example, points are expected to 
deform in a similar way. 
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3. Application and results 
A small simulation example shall serve to present first results for the adaptive KF for a 3D 
geodetic network in kinematic setup. The simulation represents a simplified version of the 
ATLAS design network. Distances and distribution of the network and object points are 
represented by less points: 12 network points and 8 object points, see Fig. 4. The 
measurement configuration is different in all 10 measurement epochs: the network is 
measured only in parts, object points are introduced starting in epoch 6, some points are in 
some epochs only partly determined, etc. A simplified deformation is applied by a rise of the 
four cavern floor network points. Other network and object points remain stable. 

 

Figure 4: Simulated network layout 

3.1. Comparison adaptive KF with single-epoch least squares 
In order to see the performance of the adaptive KF in kinematic setup the results for some 
network and object points are now compared with results obtained by single epoch least 
squares adjustment results, not considering a kinematic setup. In the following figures the 
true, simulated positions are indicated by small squares, wheras the respective estimates are 
indicated by small '+'s. The respective 1-σ error ellipses are plotted in their original size. 2D 
plots in the X/Y coordinate plane are presented. 

3.1.1. Network point, observed in 9 of 10 epochs, simulated movement in z-direction 
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Figure 5: P9 – single-epoch LS, static  Figure 6: P9 - adaptive KF, kinematic 
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Comparing Fig. 5 and Fig. 6 the superiority of the second approach is seen in more 
characteristics than the absolute difference in the coordinate results: If no measurements are 
available in one epoch (i.e. epoch 5) no estimate can be made in the single epoch case. The 
KF estimate is nevertheless accurate, due to a good prior estimation of the point movement. 
The error ellipse is slightly inflated, which correctly expresses the systems elevated 
uncertainty about the estimate. In case the point is poorly determined (epoch 8), the adaptive 
KF is less affected than single epoch least squares. 

3.1.2.  Object point, observed in 3 epochs 
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Figure 7: P19 – single-epoch LS, static  Figure 8: P19 - adaptive KF, kinematic 

In the case of an object point (representing the detector parts to be installed), the profit of the 
kinematic becomes evident: As depicted in Fig. 7 and Fig. 8, a single position becomes more 
accurately determined, when a kinematic and adaptive KF approach is applied. 

3.2. Including additional information 
If we include additional empirical information about the expected deformation the 
performance of the adaptive KF can even be improved. For the simulated example presented 
above, we can formulate the expectation that the deformation of the cavern floor points will 
be in vertical direction (i.e. in Z- coordinate) only. 
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Figure 9: P9 – no additional information Figure 10: P9 – additional information included 

Obviously the additional information has its most prominent effect on the points it contains 
information about - in the case here on the cavern floor points. Nevertheless, the improvement 
can be seen overall in a better network reliability. Coordinate differences to the true position 
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are shown in Fig. 9 and Fig. 10. The overall accuracy of the point can be improved by 
including additional information. 

3.3. Real Data 
Real data from ATLAS cavern have recently become available and are extensively analyzed 
in [5]. 

4. Conclusion 
We presented a method of coping with a deforming 3D geodetic network in changing 
configurations. The developed algorithm employs a kinematic setup for network points and 
estimation is carried out by an adaptive Kalman Filter. The implemented algorithm is capable 
of taking full advantage of any measurement and additional information to maintain network 
accuracy and reliability while providing complete deformation analysis at the same time. The 
motivation for this method is the special task of positioning particle detectors at CERN. 
Advantages of the chosen approach have been illustrated using a simulated example of the 
ATLAS cavern. 
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