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Abstract: Kalman filtering is an important tool for positioning for vehicle navigation and for 
location based services. This paper, therefore, deals with methods to enhance a standard 
Kalman filter approach for kinematic positioning. Any modelling of Kalman filter approaches 
requires white measurement and process noise. GPS positions as input quantities do not meet 
these requirements due to existence of autocorrelation. Red noise has to be assumed due to 
slowly changing measurement deviations caused by tropospheric propagation delay, for 
example. In a first step, the filter respectively the state vector is augmented by a shaping filter 
to consider red noise of kinematic GPS positions. The appropriate autocorrelation function is 
a bell-shaped curve and its characteristic parameter - the attenuation factor - is determined 
empirically. So data of some test runs (approx. 650 km, driven with the measuring vehicle of 
the institute (MOdular Positioning SYstem (MOPSY), see [21])) are evaluated by time series 
analysis. The resulting autocorrelation functions are approximated by regression analysis to 
derive a functional description. In a next step, the attenuation factor is supposed to be 
unknown because of uncertainties in determining it accurately. Therefore a second approach 
is proposed to estimate the attenuation factor by an adaptive estimation for the augmented 
Kalman filter. These approaches are evaluated with respect to the standard one. Both 
simulated data to conduct variance-based sensitivity analysis and real data are used. 

1. Motivation  
One research focus of the institute for applications of geodesy to engineering (IAGB) is 
modelling of vehicle motion by Kalman filtering. Several modifications for improvements of 
position estimation are developed. This paper focuses on correct stochastic modelling 
especially of the DGPS kinematic measurements. Improvements are expected for the quality 
of the different filter tests, significantly influencing the filter performance, and for more 
realistic accuracy estimations. Sensitivity analysis enables the investigations of dependencies 
between output and input uncertainties, thus giving hints for further improvements. 

2. Kinematic DGPS Data Analyses 
Various investigations in literature deal with the improvement of stochastic modelling for 
GPS measurement evaluation. The focus is mainly set on GPS carrier phase measurements. 
Using a more realistic accuracy estimation it is expected to obtain more correct results in least 
squares adjustment. 
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The improvement of stochastic modelling can be achieved by taking autocorrelation into 
account due to coloured measurement noise. While mathematical correlations are often 
included in standard GPS software ([6], [7]), physical correlations are mostly neglected [8]. 
Physical correlations originate from incomplete modelling of slowly changing measurement 
deviations caused by tropospheric propagation delay and multipath ([9], [10]). They can result 
in time-related and/or spatial correlations [11]. 

Examinations regarding time-related correlations and their consideration in various evaluation 
models can be found in [7], [9], [11], for example. The data analyses presented in this chapter 
aim to determine the specific autocorrelation function for positions generated from differential 
kinematic code measurements. 

test run 1 test run 2 test run 3 test run 4

characteristics
country roads, 

motorways motorways
country roads, 

hillside situation
rural area, 

small villages
epochs 12766 12601 8653 4348
duration in h 3:32 3:30 2:24 1:12
length in km 245.4 227.5 129.7 52.9
GPS available in % 94.0 96.3 97.3 90.9
GPS loss in % 6.0 3.7 2.7 9.1

 
Table 1: Statistic about the test runs 

The data used are generated from four test runs in the vicinity of Stuttgart using MOPSY. The 
institute has taken these test runs within an industry project. Table 1 gives an overview about 
the statistics of the four test runs. As can be seen, data of approx. 650 km was taken. The 
availability of DGPS measurements differs due to different characteristics of the respective 
environments. 

To determine the autocorrelation function time series analysis is carried out. Time-related 
correlations are preliminary caused by non or incompletely modelled errors. These 
correlations are supposed to be dependent of the direction of motion. Therefore the deviations 
of the DGPS positions to a Kalman filtered reference trajectory along and cross track are 
analysed. As a result, eight time series (four along and four cross track) have to be evaluated. 
After data pre-processing the autocovariance function of each time series is determined (see, 
e.g. [13]). 

The empirically determined autocorrelation functions are approximated by a regression 
analysis to generate a functional model for consideration in the Kalman filter. Since the 
autocorrelation is high for small ∆t and decreases fast, a red noise process is proposed. The 
appropriate approach for the model is a bell-shaped curve with attenuation factor β 

22 tet ∆β∆ρ −=)(  (1) 

The results of the time series analyses are summarised in table 2 and visualised in figure 1. 
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along track test run 1 25.3
test run 2 29.4
test run 3 26.8
test run 4 31.5

cross track test run 1 29.1
test run 2 30.1
test run 3 29.5
test run 4 34.3

average 29.5
stand. dev. (average) 0.97

reciprocal attenuation factor
1/beta in s

 
Table 2: Estimation of the reciprocal attenuation factor 1/β 

The differences of the reciprocal attenuation factor between along and cross track are tested 
not to be significant. As a result, the overall average of 1/β  = 30 s is used further on both in 
modelling deviations along and cross track. 
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Figure 1: Autocorrelation functions approximated by regression analysis to a bell-shaped curve, 

along track (left) and cross track (right) 

3. Kalman Filter Theory 
This chapter provides a short introduction in shaping filter theory and additional adaptive 
filtering. The standard Kalman filter theory is omitted. For further information see [1] – [3]. 

3.1. Shaping Filter 

As in standard Kalman filter, the shaping filter is divided into its two main parts. The system 
and the measurement equations: 

kk1kkk1kkk1k1k wCuBxTx ⋅+⋅+⋅= ++++ ,,,
~~~  (2) 

1k1k1k1k
~

++++ +⋅= εxAl  (3) 

Where equation (2) contains the model and provides the Kalman filter output given by the 
system state 1k+x~ . Equation (3) delivers the functional relationship between the system state 
and the Kalman filter input, the measurements 1k+l . In case of red measurement noise, instead 
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of 1k+l  a measurement '

1k+l  influenced by the noise c
1k+ε  including time-related correlation is 

given [4]. This can be expressed by the equation 
c

1k1k1k +++ += εll '  (4) 

and leads to the following measurement equation 

1k1k1k1k ++++ +⋅= εxAl '' ~ , (5) 

in which '~
1k+x  is a systematically disturbed system state. To derive an undisturbed system 

state, the measurement equation has to be corrected 
c

1k1k1k1k1k +++++ ++⋅= εεxAl ~' , (6) 

in which 1k+ε  is supposed to be white noise and c
1k+ε  red noise. Therefore the two noise parts 

can not be modelled by an increased measurement noise. Instead the red measurement noise 
has to be predicted using shaping filter augmentation ([2], [5]): 

c
k

c
k,1k

c
k

c
k,1k

c
1k wCεTε ⋅+⋅= +++ . (7) 

Within the transition matrix c
k1k ,+T  the time-related behaviour of the red noise process is 

modelled and c
kw  is supposed to be white noise. The augmentation of the standard Kalman 

filter leads to the following system and measurement equations 
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This gives the main difference of the shaping filter to the standard Kalman filter. While the 
filter algorithm remains the same, by calculating the innovation the influence of the correlated 
fraction is removed from the prediction 1k+x  

c
1k

c
1k1k1k1k1k ++++++ ⋅−⋅−= εAxAld ' . (10) 

The updated estimation of the system state is formulated with the predicted system state and 
the innovation, weighted by the gain matrix K (see e.g. [2]). Consequently, the updated 
system state is not falsified by the effects from red measurement noise. 

3.2. Adaptive Shaping Filter 
System equations may contain process coefficients. If these coefficients are only 
approximately known and are statistic quantities they can be determined together with the 
system state by adaptive filtering [3]. 
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Within the adaptive shaping filter as it is understood here, uncertainties occurring in the 
shaping filter modelling should be taken into account. The system state is augmented with an 
adaptive filter part containing process coefficients p

1k+x
~  regarding the shaping filter. This 

leads to the following system equations where the relationship between shaping filter and 
process coefficient is represented by the matrix cp

k1k ,+T . The standard Kalman filter part 
remains the same (first row in extended transition matrix).   
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As can be seen in the third row of the equation (11), the prediction of the process coefficient 
is modelled by a random walk process, excited by white noise. 

The measurement equations have to be extended by zeros because the adaptive process 
coefficients are generally not observable 

1k
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0AAl
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~
' . (12) 

4. Position Estimation 

This chapter provides a short overview about the realisations of the two in chapter 3.1 and 3.2 
described filter models. The base for the modifications shown trace back to the standard 
Kalman filter approach for kinematic positioning realised at IAGB, see [14], [15]. The 
trajectory is represented by a non-accelerated circular motion, the state quantities are position, 
orientation and velocity. Input quantities are orientation differences, distances and positions 
from differential GPS. For further information see [15], [16]. 

4.1. Model 1: Shaping Filter 

The shaping filter approach contains the system states of the standard filter and is augmented 
by deviations along (l) and cross track (q) for consideration of the red noise process evaluated 
in chapter 2. The non-linear prediction of the system state is calculated  
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The measurement equations lead to the following innovations (compare equation (10)) 
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in which '' , 1k1k xy ++  indicate the DGPS positions including red measurement noise, two 
different sensors deliver distance information and one sensor orientation differences. The 
terms following the predicted y- respectively x-coordinates in the bracket expression model 
the influence of the deviations along and cross track.  

4.2. Model 2: Adaptive Shaping Filter 

In model 2 the attenuation factor β  is implemented as process coefficient. Since it is modelled 
by a random walk process, the prediction equation is 

k1k ββ ˆ=+ , (15) 

and the updated estimation is only depending on the stochastic model of the filter. Because 
the attenuation factor is now updated each epoch, the two additional shaping filter equations 
are  
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in which the index k shows the variability of kβ̂ . It does not appear in the measurement 
equations (compare 3.2). 

5. Evaluation 
The potential for improvement of position estimation due to each filter modification presented 
has to be evaluated. This is done in two steps. First, variance-based sensitivity analysis with 
simulated data is applied to each filter approach to analyse the dependencies between input 
and output uncertainty. Second, some filter results of real data are exemplarily compared.  

5.1. Variance-based Sensitivity Analysis 
Variance-based sensitivity analysis is a useful tool to evaluate the uncertainty of output 
quantities of models in relation to the uncertainty of the respective input quantities. In 
addition it offers the possibility to determine not only qualitative but also quantitative correct 
results for models with arbitrary characteristics (e.g. linearity, additivity). Further information 
can be found in [17] and [18]. In [16] a representation of adaptation and interpretation of 
variance-based sensitivity analysis is given with respect to applications in kinematic 
positioning like focused herein. 
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Further on total order indices (compare [16], [19], [17]) are determined by the extended FAST 
method for the output quantities (system states) of each filter since the models are expected to 
be non-additive for the standard Kalman filter approach as stated in [19], [20]. The three filter 
approaches are abbreviated for simplicity: Kalman filter (KF), shaping filter (FF), adaptive 
shaping filter (AFF). The SimLab software, version 2.2, is used which is available at the 
website http://www.jrc.cec.eu.int/uasa/prj-sa-soft.asp. Two simulated scenarios are generated 
with sample sizes about 100.000. 

The first scenario is a motion on a straight line for 10 epochs, where the initial orientation is 
α0 = 50 gon. In figure 2 the total order indices of the y-coordinate estimated by standard and 
the shaping filter are shown. Dependencies of the input variance to the output variance of the 
standard approach have been analysed in [20] and the analyses herein correspond in general. 
Main influence to the uncertainty of the y-coordinate is caused by its according measurement. 
The influence by the measured x-coordinate is also very high, this occurs due to the motion 
on a straight line with orientation of 50 gon. Since the total order indices are nearly the same 
for both filter approaches and this is also true for the x-coordinate, orientation and velocity, 
no statement about the mode of operation of the shaping filter can be made by this. 
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Figure 2: Total Order Indices of y-coordinate, KF (left) and FF (right), straight line, α0 = 50 gon 

The standard deviations of the system states are computed by uncertainty analysis. In figure 3 
the standard deviations of the y- and x-coordinates of the standard and the shaping filter are 
presented. Standard deviations are increasing up to the fourth epoch, this shows the influence 
of the variances of the initial system states, which are high in respect to the estimated one. 
Here also no significant differences between the two filter approaches can be determined. 
Higher standard deviations would have been expected, but the deviations along and cross 
track have only low influence on the standard deviations of the positions estimated by the 
shaping filter as they are very small (centimetre level) and their standard deviations, too. 
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Figure 3: Standard deviations of the position estimations, KF and FF 
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To analyse the influence of the variance of the simulated measurements to the variance of the 
augmented system states in the shaping filter, sensitivity analysis is conducted for the 
deviations along and cross track. Their total order indices are shown in figure 4. Similar to the 
effect described above, both the variance of y- and x-coordinates from DGPS give the same 
influence to the variances along and cross track. The variance cross track is also influenced by 
the variance of the orientation differences. The main influence is caused by the differential 
odometer, because its variance is higher than the one of the gyro. Such effects have also been 
evaluated in [20].  
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Figure 4: Total Order Indices along (left) and cross track (right), straight line, α0 = 50 gon 

The second scenario evaluated is a motion on a straight line with initial orientation of 
α0 = 0 gon. Once again, in figure 5 the total order indices of the deviations along and cross 
track are shown. As expected, the main uncertainty along track results from uncertainty in the 
DGPS x-coordinate, while the main uncertainty cross track is given through the uncertainty of 
the DGPS y-coordinate and of the orientation differences by the differential odometer. 
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Figure 5: Total Order Indices along (left) and cross track (right), straight line, α0 = 0 gon 

In the current stage of research, the sensitivity analysis of the adaptive shaping filter leads to 
the same results as the analysis of the shaping filter. The changes in the adaptive estimated 
attenuation factor are too small for an estimation within 10 epochs; so the respective total 
order indices are zero. The evaluation of more epochs is very time consuming because of the 
big sample sizes needed. Similar difficulties have already occurred while evaluating the 
shaping filter approach. The indirect influence of the deviations along and cross track to the 
position estimation can not be determined by the sensitivity analysis by now. 
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5.2. Real Data Analyses 
The operation and the possible improvements by the modified filter approaches are now 
evaluated by means of real data from exemplarily chosen parts of the four test runs presented 
in chapter 2. Using the standard Kalman filter (KF), the shaping filter (FF) and the adaptive 
shaping filter (AFF) position estimation is carried out. The results estimated and the standard 
deviations of the system states are compared. This is exemplarily shown for test run 3 in this 
chapter. 
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Figure 6: Results of filter estimations (KF, FF, AFF) using real data, example 1 in test run 3 

In figure 6 a part of test run 3 is shown, where DGPS measurements of bad quality occur. For 
this case all three filter approaches described before are realised. Here the standard Kalman 
filter falsely forces the position estimation to the DGPS position. The shaping respectively 
adaptive shaping filter detects the bad DGPS quality and position estimation is improved by 
reducing the weight for the DGPS positions. This indicates a better quality of the filter tests 
due to the augmented modelling. 
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Figure 7: Results of filter estimations (KF, FF, AFF) using real data, example 2 in test run 3 
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In figure 7 also differences in position estimation are shown. The positions estimated by the 
(adaptive) shaping filter seem to be a bit smoother than the standard Kalman filter estimation. 
Both scenarios presented here are useful to evaluate possible improvements by modified filter 
approaches. Approx. 5 % of test run 3 the filter estimation differs for at least one approach. 
Methods to quantify these differences will be developed.  

KF FF AFF
sY in m 0.58 0.63 0.63
sX in m 0.55 0.59 0.60
salpha in gon 2.37 2.35 2.35
sv in m/s 0.10 0.10 0.10
sl in m n/a 0.25 0.25
sq in m n/a 0.24 0.24
sbeta in 1/s n/a n/a 0.0012  

Table 3: Standard deviations of the three filter approaches for test run 3  

In table 3 the standard deviations for each filter approach are tabulated. Summarised it can be 
stated, that the shaping filter approach actually results in slightly higher and therefore more 
realistic standard deviations for the position estimation. The standard deviation of the other 
output quantities remain unchanged. The adaptive shaping filter produces nearly the same 
results. In comparison the standard deviations of the position estimations correspond with 
those from simulated data, especially for the Kalman filter approach. The standard deviations 
of the deviations along and cross track is much higher than in the simulated case. This leads to 
the higher standard deviation for position estimation in the shaping filter. For this reason the 
importance is indicated to estimate more epochs also in case of simulated data. 

6. Conclusion and Future Outlook 
The augmentation of the standard Kalman filter to a shaping respectively adaptive shaping 
filter has been successfully realised. Further work has to be done for evaluation of the 
achievable improvements. The sensitivity analysis as presented here indicates no difference in 
position estimation between the three filter approaches. The expected influence of the DGPS 
measurements to the deviations along and cross track can be shown. By now the influence of 
the deviations along and cross track to the position estimation can not be evaluated. Two 
reasons are conceivable: On the one hand, the simulated input quantities for the DGPS 
measurements are generated with normal distribution and white measurement noise since no 
consideration of time-related correlation is possible for the extended FAST in SimLab. This 
leads to a very small estimation of the deviations along and cross track and their respective 
standard deviations, which are higher in real data estimation. On the other hand, probably 
another method for sensitivity analysis has to be applied since the deviations along and cross 
track act like input quantities in relation to the DGPS measurements. This is not explicitly 
considered yet. These investigations have to be transferred to the evaluation of the adaptive 
estimated attenuation factor. Further methods to prove the determination of this process 
coefficient within the given model setup have to be applied. Nevertheless, improvements of 
position estimation by shaping filter augmentation are shown in real data, indicating the 
importance of the augmentation implemented. The improvements have to be quantified 
appropriate. 
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