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DERIVATION OF ENGINEERING-RELEVANT DEFORMATION
PARAMETERS FROM REPEATED SURVEYS OF SURFACE-LIKE
CONSTRUCTIONS

Athanasios DERMANIS
Department of Geodesy and Surveying, Aristotle University of Thessal oniki

Abstract: The deformation of a surface-like construction iscanplicated problem in the
deformation analysis of Riemannian manifolds. Tk&ewvant mathematical theory and a
relatively simple solution algorithm are developedhich allow the computation of invariant
deformation parameters from coordinate displacesnait isolated control points. The
computed parameters are the dilatation and maxirsiv@ar strain at each surface point as
well as variations in curvatures related to surf@eading. The required interpolation of
coordinate displacements over the whole surfaaeaized by stochastic interpolation, i.e.
prediction where displacements are modeled asadlyatorrelated random variables.

1. Introduction

The study of the deformation of constructions byesed surveys usually results in point
displacements between two campaigns, which howaneside little direct information to the
construction engineer; in order to access the ywafiethe construction he is rather concerned
with stresses related to the strength of the natefhus instead of point displacements we
need rather strain parameters which can be relatestresses through the constitutive
equations of the specific material as providedheytheory of elasticity.

Modern architecture resorts many times to curvetnehts in order to achieve its aesthetic
goals. We will be concerned here with curved cowasittn elements with one of their
dimensions quite small with the respect to the rstheo that they can be virtually studied as
curved surface elements. Repeated surveys, ewjo apochst andt’, provide corresponding
3-dimensional coordinates, =x, (t) =[x Y, z]" andx =x,(t') =[xy Z]" for a specific set
of characteristic points =1,2,...n. On the other hand any study of deformation cfts
continuous knowledge of the deformation mapping x' =f(x) over the whole surface and
an interpolation must take place in order to passnfthe discrete information at hand
X, — X; =f(x;) tothe continuous one, — x, =f(x,) for any other surface poirt .

From the point of view the “strength of materialk&re are three types of shape alterations in
the neighbourhood of any surface polt with respect to which the material may react in
different ways. The first one is dilatatiah, i.e. local alteration of the surface area (extans

for A >0, contraction forA<0 (fig. 1a). The second is shear along any locdi@eof the
surface which relates to forces tending to “tebg surface apart along that direction (fig. 1b).
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Of particular importance is to find the directioitiwthe maximum shear strap. Finally the
third type of deformation relates to the “bendiraf’the surface, which can be geometrically
expresses by the change of curvature. Any plansinmashrough the surface normal cuts the
surface into a curve having curvature the invefsberadius of the locally best fitting circle.

(a) (b)

Figure 1: Three modes of surface deformation: (a) dilata{erea variation), (b) maximum
shear and (c) bending expressed by the change othi of curvature of normal sections

Again we have to determine the direction on théaserwhere the largest change of curvature
and thus bending occurs.

For the first two parameterd and y it is sufficient to study the surface in linear
approximation, i.e. to study an infinitesimal pardbund the point of interest by approximating
the surface with a plane. If the surface is desdibntrinsically by two coordinates
u=[u, u,]"it can be represented by an equation of the formx(u,,u,)=x(u). For the
study of surface bending the surface is approxithbyea best fitting ellipsoid.

We shall therefore study the deformation of a plemsection 2 and the surface curvatures in
various directions in section 3. From the matherahtpoint of view the present work falls
within the deformation analysis of Riemannian maldg, studied e.g. in relativistic mathematical
elasticity (Marsden & Hughes, 1983). For a geodsgdjaication of this topic see Voosoghi (2000).

2. Planar deformation and its application to surface dilatation and shear

We can study the deformation of a plane at a pdaigoint P with the help of the variation
of the Cartesian coordinates=x(t) =[x, x,] and x"=x(t") =[x x;] of every surrounding

point. This establishes the plane deformation mappd' =f(x) and all local deformation

!

parameters can be derived from the local valuehef deformation gradienE :a—x. As
X

shown in Dermanis and Kotsakis (2006), and Biagi Bermanis (2006) we may utilize the

eigenvectors and the common eigenvalues of theiceatF'F and FF' in order to express
F through its singular value decomposition (SVD)

cosf, —-sig,|[A O 9 9
F=Q'LP=R(-4,)LR(4.,)=| . ° o || A co, sif,]
sing, cod, || 0 A, | -sing, cod,
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Noting thatF'F =P'L°P and FF' =Q'L’Q, A? and A are the common eigenvalues of the
matricesF'F and FF™. The corresponding eigenvectgs, p, of F'F are the columns of
the matrixP" =[p, p,] , while the corresponding eigenvectays q, of FF' are the columns
of the matrixQ" =[q,q,] . Ordering so thatl, > A,, p, =[cosd, sing, | is the unit vector in
the direction of maximum elongatioA, in the epocht coordinate system, whild, is the
minimal elongation in the perpendicular directidmus &, is the (measured counter-clock-
wise) angle from thex, axis to the direction of maximum elongation. Theneadirection at
the coordinate system of epothis expressed by the vectqy =[cosd, sind, ] and thusg,

is the (counter-clock-wise) angle from thg axis to the direction of maximum elongation.

An infinitesimal circle with radiusAr, with areaE = 7AAr? is deformed into an ellipse with

axes AAr, AAr having areaE'=7mA,Ar® and thusAA,=E'/E is the factor of area
increase (or decrease if less than 1). The ditatati

A=A, -1=(E'-E)/E )

expresses the ratio of area variatiéh- E with respect to the original arda.
For the maximum shear straip we use (Biagi & Dermanis, 2006) a decomposition

F=sR@)r,, whererl’ =[(1J ﬂ is a matrix of shear along the first axis, = R(-¢)T'R(¢)

represents shear in the direction angle s is a scale parameter arRi(y) an additional
rotation such that the 4 parameteys ¢ , s, ¢ are as many as the elements fof

Comparison with the SVD representation leads toctmaputation of maximum shear and its
direction anglep by means of

A=A, 1 2
=42 =64, ——arctan—. 3)
Yy ,—/‘1/12 p=06p 5 iy
In order to apply the above results for a plana twurved surface, we need to choose intrinsic
coordinates on the surface=[u u,]’ and u’'=[u; u;]" for both epochst and t',

respectively. For the first epodhwe choose the 3-dimensional horizontal coordinajesx,

u, =y, in which case the surface equation has the farax(u) =[x y z(x y)]'. For the
second epocht’ we choose to identify points on the surface aguith their horizontal
coordinates they had at time i.e. u; = x, u, =y. Such coordinates for the deformed shape

borrowed from those of the original un-deformedpghare called convected coordinates (see
e.g. Marsden & Hughes, 1983, p. 41). The “deform&uatface equation at epoc¢h has the

form x' =x'(u") =[X(x y) V(X Y) Z(x,y)]". The deformationx’ =f(x) is described in this

case by the coordinate gradidﬂt:‘;—u, which in the particular case of convected coasdin
u

tesu’ =u, becomes the unit matrik, =1 . It cannot be used for proceeding as in the planar
case, because it does not correspond any more ootlawgonal reference system with base
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vectors of unit length as in the case of planarné&s&n coordinates. Instead it refers to the

I

local reference systems with bases 0, x :g—x at epocht and€ =0d,x’ :% at epocht’

' y ' i
(i =1,2) formed by the tangent vectors to the surfacedioate lines. Note that plane,(e,)
represents the planar approximation to the suda@pocht and the planed,,€,) does the
same for the surface at epoch Specifically

T T
el:%:|:1 0 %j‘ , eZZ%: 0 1 % , (4)
0x 0x oy oy

I ) I I T I ) I I T
. 0X _[ax ay' O_Z} e,_6x_a_x dy 0z . 5)
oy oy oy

Tox Lox  ax  ox 270y

All we need now is to change the two bases to odhwoal ones[&&4 =[ee]S and
(&8 =[€€] S , such thatb8p= 0, and @ &p=7J, . Thus a local vectog at some particular

u
point P, lying within the local tangent plane has the fqrmulel+u2e2:[ele?]{ 1}:
u2

=[ee,Ju and will take the new representatiopn=[e e,Ju=[e,e]SS™u=[ &8)S'u=
=[8p8 & with ¥%=S"u. In a similar wayy' =[€ €,Ju’ =[&&j & with ¥=S"u' for the
epocht’'. Now the planar coordinate® and & refer to orthonormal bases and the gradient

we need ik :%3, or in view of the chain rule of differentiation
C

] , -1

an_ﬂloza_ﬂ}’ba_ua_u:i?f)a (a_w/j =S (5-1)-1:5'—13. (6)
0% ou' du 0% Au ou

Noting that[ee,] =[&#4S™ and [e€,] =[&@] S, the required transformation matric&s
and S can be derived from the metric matrices

g [1 0O
é/(): T é/ - %é{o 1 é) - :I , 7
T T
G =[ee]Tee] = {e#el eﬂ =sTe@pl 6gpst=s"¢=s'st  (8)
eZel e2e2
and similarly
T I 1T T
Gr — |:e_|'_Teil ellTelz:| - S’_TS’_l- (9)
eZ e1 eZ eZ
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If we therefore compute the metric matric8s and G' and proceed to their corresponding
diagonalization®G =R(-O)MR(0®), G' =R(-©)M'R(©’) we need only rewrite them in the

form G =R(©)"' MM Y’R(©) =[M " R(©)]'[M YR(O)] =SS " to realize that
S*t=M"?R(©), and similarlyS™ =M'"?R(@’) so that

S=R(-O)M 2, S =R(-0)M 'V (10)

and finally the gradienE =S™'S for the computation of, y and ¢ is given by

Jm/mcos@'-©) /m /m,sin@-0)
~Jm,/m sin@ -0) /m,/m, cos@ -0 )’

where m >m, are the eigenvalues @ with corresponding eigenvectofsos® - sin@ ],
[sin® co®] and m >m, are the eigenvalues o' with corresponding eigenvectors
[cos®' -sind' T, [sin@' cosD'].

Let us recall that for the computation of the ntetmatrices we need to know the bases
e=[100,z",e=[01072,€=[0,x0,y 072", ¢€=[0,x0,ya,Z]", and thus the
functions z(x,y), X (X Y), Y(X V), Z(x,y) which must be derived from the interpolation of
the discrete datpx y, z] and[x vy Z].

F=M"’R(@)R(-O)M ?= (12)

3. The best fitting ellipsoid to a surface and the corresponding curvatures.

Any surface is an ellipsoid in second order appnaion with one axis in the direction of the sur-
face normal defined by the unit vector|p [* p wherep = 0,Xx*0, X =€ xe,. Any plane pas-
sing throughn intersects the surface into a “normal sectionVeux(s) having a tangent vector
t=0x=0,x(du/ds)=09,x(dy, /ds)+0, x(du,/ds) =[ee,]&  which has  components
&= du/ds in the local basi$ee,] . The curvaturek of such a curve is called a normal curvature

and can be expressed by means of the first andhddoodamental forms of the surface as
(Stoker, 1969)

[ du'Ldu L&
K(®=—= =

= = . 12
| du'Gdu &G& (12)

The first fundamental form is related to the dise@elementds on the surface by =ds’ =
=dx"dx = (d,xdu)" d,xdu =du" (d,x)" 8 ,xdu = du'Gdu, whereG =(d,x)' 9 x =[ee,][ee]

is the already introduced metric mat& with elementsg, =€'e,. The second fundamental
form is 11 = —dx"dn = —(d,xdu)" d,ndu =du’ (-9,x)" d,ndu =du’Ldu, where
L=-(0,x)"9,n=(0;x)'n is the matrix with elementsl, =-(9,x)'d,n=(0;,x)'n=
=(aulek)Tn. The curvature of a normal section undertakesnigimum k;, and minimum
value k, (the so called principal curvatures) at two pediemar to each other “principal”
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directionst, andt, (unit tangent vectors to the corresponding noseations). The principal

curvatures are given by
k =H++vH?-K, k,=H-vH?-K. (13)

1 9,L,,-20,L ,+9,L detL
H == +k = 922711 1212 1 22, K — k — , 14
gt 2deG 4 = Gete (14)
are the surface mean and Gaussian curvaturesctespe The principal directions, andt,
are determined through the corresponding ratios (&/ &), by means of

where

_:_L12_kig12:_|‘22_kig22 15
“ Lll_kigll LlZ_kiglz, 4o
t = (o8 +e,) =[e, e] [’”’ ﬂ, i=12. (16)
where
. (17)

1 = _ -
JOuPE +201,0,+ 95

The normal curvatur&(® at any direction with unit tangent vectof® =[ee,]& is much
easier to compute by means of the angldetweent, andt (t't, =cosd) using “Euler's

theorem”
k(6) =k cog 8+Kk, sirf 4. (18)
To apply the above results to our problem we neecbtnpute also the normal unit vectors

and the second fundamental form matridgs= (auiek)Tn and

- € X8, n = € ¥€,
le,xe, |’ |e <€, |
Li. = (9, €)'n' at the two epochs andt', respectively, using the known vectors
1 1 0 0 0,X X, a,x X,
&= 0 |=| 0|, &= 1 |=| 1], =0y =y |, &=0)y [=y,| (19)
0,z| |z ,z| |z 4 z, 9,7 zZ
and their derivatives
0 0 0 0
aulel=axe1= 0 ,6u2e1:6ye1= 0|, 6u1e2=axe2= 0|, 6u2e2:6ye2: 0 (20)
2, Z, 2, 2,
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X, Xy Xy Xy
auiellzaxe'l: y’xx ! au’ze:'l.:aye;.: y;y ’ auie'zzaxe;: y;(y ! au’ze'zzayelzz y;/y . (21)
The unit normal vectors become
-z n Y2, ~ ZY,
—_ l _ r I —_ 1 'y N S 22
ez B R I 22
v L1 Ny XYy = VX,
where
D =|& x€)| = [(Y.Z, ~ ZY,)* +(ZX, ~ XZ,)* +(X.Y, = V.X,)?. (23)

The second fundamental form elements are

L:(63X)Tn:|:|_ll L12i|: 1 |:Zxx ZXYi| (24)

Ly, Ln| [Z+22[2y 7y

L, =(0.6€)'n =x.n+y n,+2zn, L, =(0,€)"n" =X n +y, n,+z n,

Ly, =(0,€)" n" =X ni+y,n,+Z, n, (25)

We now have all the necessary quantities in omeomputeH , K, k., k,, g, p,, t;, t,

for epocht as well as the corresponding quantitiés, K', k/, k;, o/, 0,, t;, t, for epoch

t'. We need to compare the normal curvature at actibre (tangent unit vector)
t =t(8) =cosdt, + sirdt,, identified by its angled that forms with the principal direction

t,. Using the above value (16) foy andt, it is easy to verify that the componedéit- &(6)

s6 9
of t =[ee,] &=[tt] {:)ne} J eg] {’UZOZ ﬂ;pz}[;ze} are given by
1 2

(26)

. {/lel ﬂzpz}{cosﬂ} _ {ﬂlpl cos6+ 1,pP, Sirﬂ}
sind ’

H H; B th coF + i, sirg
In this case the curvature of the normal sectiahedirectiont =t(6) is given by the simple
relation
k, =k(8) =k, cosf+k, sird. (27)

To find the corresponding direction at epd€hwe note that the normal section with equation
x(s) and tangent vectar=dx/ds = %= (0 X)&=[ee,]&, is deformed at epocti into a curve

x'(s) =f (x(s)), with tangent vectot’ = dx/ds=%=(d,x')& =[€€,]&' . In our special case
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of convected coordinatas =u, t' =[€€,]& and the angl&' = ' (8) betweent’ and the new

'
1101
r

principal directiont; = 14 (o€, +€,) =[€, e'g{ } is given by

1

o 1Tt = &G,{u}pﬂ _ [ﬂlplcosewzpz Sirﬂ}T G,{ui\pi
1

, _ . }=Acos<9+Bsin9, (28)
- M, cosf+ , sind 78
where
A= (G101 + Q1) + H{G 4 P 9 4 )
B =160,(9u4101+ Qi)+ 11 {914 £/ 9 #): (29)
Differentiation of (28) gives
08 _ Asing-B cod
06 sing' '
Note that the deformed curwé(s) is not any more a normal section of the deformethse,
but we find it convenient to compare the curvatofré¢he normal sectiorx(s), not with the

curvature of its image but rather with the curvatof the normal section having the same
tangent vector as the image. Thkswill be compared with the corresponding normatisec

curvature

(30)

K, =K'(6) =K cosg @ )+K, sir? 0. (31)

The difference in curvaturedk(8) =k'(8) -k(€), will take its extreme value at some
particular directiond, for which dAk /86 =0. Obviously

oAk oK' 98 ok . 00 .
—=———-—=[-k/sin@ +k, cos? ——[-k, sid+k, cog|=
00 06 06 ae[kl 2 ae[l » o8]

=[-KSin@ +K, cost’ ]AS'”G__S COF [k sing+k, cod]= | (32)
sin
or
-k, cotd

-k +k; COt9'+k1+: 0 33
kit A-Bcoté (33)

Noting that

cosdé _  Acog+B si®  _ A c#+B

cotd' = (34)

J1-cog@ |t Aco®+B si#? | cdd+ t A c@+B ?)

and settingX =cotéd, we need to solve by numerical techniques thelimear equation
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KX g AXB g, (35)
A-BX J1+ X2 = (AX +B)?
Using X we determined and & from cotd=X and cotd = AX+B , as

JX?+q-(AX +B)*
well as the most differing curvatures
~ - a1 - TS |
k =k, cosf +k, S|n9:E, k' =k cosd +k, S|n9’:§ (36)
Of more direct interest to the construction engirege the original and final radii of curvature
R and R, at epochst andt' respectively, of the normal sections in conjugatgterial
directions, with original directio® (measured from the principal axis counter-clock-wise)

corresponding to the pair of conjugate directiamswhich the maximum variation of normal
curvature and thus the maximum “bending” of thefame appears. Particular cases are the
developable surfaces constructed by bending a plamdace without local deformation.
These have zero curvatukg at the direction of a line contained in the suefand we need

only to compare the principle curvaturksandk; , for which Ak =k’ —k is maximized.

4. Inter polating heights and displacements

In order to compute the derivativ :% :% :é = 0"z z _6_22
BT Y oy’ HP VR oy Y oy’
_ox _ox , _oy _ oy , 0z , o7 , 0% , _0°X
X ox ' X ay Y ox ' Y, oy’ %7 oy’ T M oxdy '
0’x , 0%y ., 0% 0%y’ 0’z _, _ 02 _, 97 :
Yo T = , =, =—, =—, =—— appearin
Xy ay? Yo =2+ Yo oxoy Yy ay? % P oxoy 2 ay? PP g

in the above calculations, we must “construct” bieipolation the “height functionz(x, y)
and the “coordinate variation functiong’(x, y), Y'(x,¥), Z(xY). Instead of the last three it
is usually convenient to sek =x+Ax, Yy =y+Ay, Z=z+Az and seek rather the
displacement function@x(x,y), Ay(x,y), Az(x,y). Thus we need to interpolate for four
functions on the basis of the available discretdada =z(x,y), Ax =AX(X,Y,),
Ay, =Ay(x,Y,), Az =Az(x,y,), i=1,2,..n. In general a functionf(P)= f(x,y) with
discrete dataf, = f (P) = f(x,y,) can be interpolated by modelling as a linear comon
of known basis functions of the fornfi(P) =ag,(P)+a@,(P)+...+a.¢,(P). For all the
data the corresponding set mfequationsf, =a@,(R)+a¢,(R)+..+a.4,(R), i=1...nin
the m unknownsa,, k=1,...m, takes the matrix fornf =Fa, with F, =¢,(R). When
n>m there is no exact solution but instead we mayf seFa+v and obtain a least-squares
smoothing interpolation through= (F'PF)™F'Pf , for a positive-definite weight matrif.
For n=m and exact interpolation is obtained througk F'f . However the most flexible
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case is that of exact interpolation with< m and an infinite number of solutions, in which
case a unique ona=W™F' (FW™F")'f, for some preferably diagonal weight mathix .

Setting (f,), = ¢, (P), the interpolated function takes the forh{P) :ZL a g, (P)=fla=
=fiW?F (FW™FT)™f . If the two point function k(P,Q)=>"" W, '8, (P)$(Q) is
introduced, the solution can be also written in toenpact form f (P) =k ;K 'f , where
K; =k(R,P) and (k;); =k(P,R). Thus the solution can be obtained even withoptiey
deflnlng the weightsp, or the base function§g,(P)} , by introducing rather directly the
function k(P,Q) . A probabilistic interpretation is possible if wetW, =1/ and interpret
o} as the variances of the zero-mean uncorrelatefficierts a, . When a, are considered

random variablesf (P) :ZL a 9. (P) becomes a zero-mean stochastic process (random
function) and k(P,Q) =E{f(P) f(Q} is simply the covariance function d@(P,Q) of

f (P). The interpolating equation§(P) =k LK f become in this case the (minimum mean
square error) prediction equations

f(P)=c,C'f (37)

well known in geodesy under the jargon name “caitmm”, with C, =C(R,P,) and
(c,), =C(P,R), determined from the single choice of a positiefirdte covariance function
C(P,Q) =C(Xp, Yp:%y:Yo)- Since the prediction poire appears only in the vectar,, it is
possible to obtain the required first and secomtiopartial derivatives of (P) = f(x,y) by
differentiating directly the eIements(cp) =C(P,R)=C(x,y;%,Y;). For example
2
:a Cp) = 6 f C(x,y;x,Yy,) and similar relations hold for
X0y
the other partial derivatives. Replacwfg(x, y) with z(x,y), AX(X,y), Ay(X,y), Az(X,Y),
2
we may interpolate-predict the required derivatiweg. X, = gx g gx(x y), etc., and hence
2 2
the required ones, eé];i a(X+AX) =1+ OAx O°X _ 0%(x+AX) 07X
0X axay oxoy oxay

derivatives at hand we proceed to the computatioth® matricesG, L, G', L', using
equations (8), (9), (24) and (25), which constitthe basis for the determination of the
principal normal curvatures , k,, k/, k;, using (14) and (13). Solving equation (35) we

(x,y)=c'C™f with

, etc. With all the

determine the angles of maximum bend@ngé’ and flnally (usmg equat|on 36) the

corresponding curvaturds , k' and the radii of curvatur=1/k , R =1/K'.
Before interpolating (in particular when coordirmte and x; do not refer to the same

reference system), it is necessary to perform enttrremoval” by a least-squares fitting
where the coordinateg! are rotated R) and translatedd) into a new set®=Rx +d,

satisfying D" |x, —%of= min.

10
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