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GEODETIC APPLICATION OF R-ESTIMATION:  
 LEVELLING NETWORK EXAMPLES 
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Abstract: The paper presents geodetic application of R-estimation. Proposed method 
concerns estimation of differences between parameters of two functional models. Such 
estimation seems very useful in many geodetic problems, e.g., when observations are 
disturbed with gross errors or when differences mentioned are displacements of geodetic 
network points. The paper presents general solutions of R-estimation but it focuses special 
attention on its geodetic applications. In particular, it concerns levelling networks. The 
estimation method proposed here can be applied, for example, to monitoring of reference 
mark stability. The paper presents particular solution of such problem, based on R-estimation 
principle. Theoretical derivations and analysis are illustrated with some numerical examples.  

1. Introduction  

R-estimation is one of the fundamental way of robust estimation, together with M-estimation 
and L-estimation (Huber 1981). It is well know and often applied in many scientific 
researches, e.g., (Mukherjee and Bai 2001; Rousseeuw and Verboven 2002). The main idea of 
R-estimation is to apply some statistical rank test for example the Wilcoxon one (Huber 1981; 
Feltovich 2003) to estimate a shift between two samples. For example, from a geodetic point 
of view those two samples can be interpreted as two sets of geodetic measurement results or 
results obtained in two different periods. Then the shift between the samples can be regarded 
as effect of geodetic point displacement or some non-random error of measurements. On the 
other hand, R-estimation can be also regarded as an estimation of differences between 
parameters of two different, functional models.  Some geodetic applications of R-estimators 
were proposed in the paper (Duchnowski 2008).   

R-estimation, due to its main principles, is robust against outliers and therefore can be an 
alternative for other robust methods of adjustment, e.g., methods of M-estimation class (e.g., 
Huber 1981, Xu 1989, Yang 1994, Duchnowski 2005). Robustness is an important property 
of R-estimation but it is not the only advantage. Another one is possibility to apply that 
estimation class to elimination of some non-random errors from observation sets 
(Duchnowski 2008). Presented R-estimation properties and applications make the method 
useful in solving of many geodetic problems. That paper describes application of R-
estimation within a displacement measurement process. Particular solution concerns leveling 
networks however their assumptions and principles can also be extended for other kinds of 
geodetic networks.  
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Let us consider a leveling network established for deformation or displacement monitoring. 
Estimation of point heights that change in time is most natural application of R-estimation. 
Such estimation can be regarded as estimation of parameters of two different, functional 
models (models formulated for two different measurement periods). That application is 
illustrated later on with the first numerical example. It is also well known that stability of 
reference marks is essentially important in such problems. Several methods were elaborated 
to recognize stable reference framework, they are described in many papers and books 
(Prószyński and Kwaśniak 2006). However, those methods sometimes fail, e.g., if a set of 
measurement results  is disturbed with a gross error. Thus it is advisable to have a chance to 
compare results obtained from different methods. The present paper proposes a new method 
of mark stability monitoring. That method is of course based on specially modified R-
estimation. It is very important since its theoretic foundations are different from the classical 
ones (e.g., Huber 1981, Prószyński and Kwaśniak 2006, Duchnowski 2008). Another 
advantage of the method is its robustness which facilitates monitoring of bench marks 
stability even when an observation set is disturbed with a gross error. The proposed method is 
also illustrated with numerical example. 

2. R-estimation 

2.1. Theoretical foundation and basic solutions 

Let two independent samples x1, x2, …, xn and y1, y2, …, ym be realizations of random variables 
X and Y and let F(x) and G(y) = F(x - ∆) be distributions of X and Y, respectively. Thus both 
distributions differ from each other in a quantity ∆, which can be regarded as a shift between 
two samples. The main tusk of R-estimation is to assess the shift ∆. The following test 
statistic can be formulated for such reason (Huber 1981) 
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where a(i) are some given scores and Ri is a rank of xi in the joint sample (containing all 
elements of two mentioned ones). Usage of a particular function a(i) depends on the kind of 
assumed rank test (Huber 1981; Feltovich 2003; Narajdo and McKean 1997). The  

R-estimation concept is to find such estimator R∆̂  of the shift  ∆ that makes 0, =mnS  (or less 

strictly 0, ≈mnS  considering some properties of mnS , , e.g., discontinuity) i. e., to search for 

such shift estimator that makes the test (1) unable to detect a difference in locations of two 
mentioned samples (or to make it least able for such detection).  

Let us consider test (1). Scores a(i) are usually generated using a function J(t). For example  
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There are several other possibilities for scores a(i), also for the same J(t). They can be found 
in, e. g.,  Huber (1981) or Narajdo and McKean (1997). If the Wilcoxon test is assumed, i. e., 
if 
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then most often used functions a(i) lead to the same test statistic (Huber 1981). Assuming 
such form of J(t) function, the following R-estimator of the shift can be formulated 

)(ˆ
ji

R xymed −=∆      (4) 

where )(οmed  is a median operator and njmi ≤≤≤≤ 1,1  (Huber 1981).  

Basing on the same assumptions another useful R-estimate can be derived. Consider only one 
sample x1, x2, …, xn of the variable X. Now, let the expected value E(X) of X be estimated. To 
solve the problem one can construct a “mirror image” sample,  i. e.,   2E(X) - x1, 2E(X) -  x2, 
…, 2E(X) -  xn ,  which can stand in for the sample y1, y2, …, ym. Then the following estimate 
(Huber 1981) 
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( nmjnmi +≤≤+≤≤ 1,1 ) makes 0, =mnS  (or at least 0, ≈mnS ).   

The R-estimates presented above are derived basing on the test statistic in Eq.(1) and the J(t) 
function from Eq.(3). They can be regarded as some variants of the Hodges-Lehmann 
estimates, too (e.g., Huber 1981). The estimator Eq.(5) should be used very carefully 
especially in geodetic applications where number of observations is not very high. It is due to 
properties of the Hodges-Lehmann estimators. It can be proved that in a very small sample. 
i.e., when n <5,  that estimate is not robust for outliers (Rouseeuw and Verboven 2002).  

2.2. Adaptation for geodetic purposes  

Both presented estimators can be useful in some geodetic elaborations (Duchnowski 2008). 
However, there are some limitations of their applications. The main limitation concerns 
assumptions of the method,  i. e., that all sample elements are identically distributed. If that 
assumption is taken strictly then geodetic applications of R-estimation is limited to the case 
when only one quantity is measured and it is measured several times with the same accuracy. 
As for the second problem, it can be easy overcome if only measurement results are 
standardized or if one applies other rank test (Feltovich 2003). The way how to deal with the 
first limitation is presented in the paper (Duchnowski 2008) and it is now shown briefly.  

Let 1×∈ nRx  be an observation vector. Generally, that vector consists of realizations x1, x2, …, 
xn of different random variables, which makes R-estimators (4) and (5) unable to use.  Let us 
consider the classical functional model of a geodetic network in the form 

AX-xv =       (6) 

where: mnR ×∈A  is a know, rectangular matrix, 1×∈ mRX  is a vector of unknown parameters 

and 1×∈ nRv  is a residual vector. Let X
~

 be a “true” or at least initial value of parameter X and 
let it be known. Then one can write 

XA-xv 
~~ =       (7) 

and compute a new sample [ ]Tnvvv ~,...,~,~~
21=v  (the notification is simplified for the sake of 

clarity; formally it is [ ]iiv v~~ = ) . Because all residuals vi (the vector v) can be regarded as 
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identically distributed (assuming the same accuracy or residual standardization) then also iv~  

(the vector v~ ) can be (e.g., Dione 1981). It means that v~  can be apply in the estimates (4) 
and (5). Since the true value of the parametric vector X stays unknown it is very important to 
find a “good” initial valueX

~
. For example, it can be computed on the basis of measurement 

results x1, x2, …, xn  or can be taken from the previous measurements or adjustments. The 
second way seems especially useful in deformation or displacement elaborations where 
current results are compared with the previous, control ones. Despite X

~
 is usually only an 

assessment of X and the assumption about identicalness of distributions of the vector v~  

elements is not satisfied strictly, practically computed X
~

 should be good enough to neglect 
such nonconformity. 

3. Particular Applications in Leveling Networks  

Generally, R-estimation applications in leveling networks are the same like in other kinds of 
geodetic observational systems. R-estimates can be applied to, e.g., elimination of systematic 
errors or gross errors from observation sets. The method can be also used during classical 
least squares adjustment (LS method) for example in the R-LS method (Duchnowski 2008). 
This paper proposes applications of R-estimation in leveling networks created for deformation 
or displacement detection.  

The first application is the most natural one and concerns vertical displacement estimation. 
Consider a leveling network created for such displacement detection. Such network should be 
measured at least two times resulting in two observation vectors x1 and x2. Basing on assumed 
functional model Eq. (6) one can write 

111 AX-xv =       (8) 

and 

222 AX-xv =      (9) 

for each epoch, respectively. Usually, heights of the network points are assumed as 
parameters in such functional models. Thus vectors1X  and 2X  consist of heights of the same 

points but in different epochs. Let us now consider a single element [ ]k2X  of the vector 2X  

that corresponds with the element [ ]k1X . Then a difference [ ]k2X - [ ]k1X  can be regarded as a 

vertical displacement of the respective network point. The formula (5) can be applied to 

estimate such difference. Since the first measurements are control ones, the estimator 1X̂  

(obtained using for example the LS method) can be regarded as a good initial value 2
~
X  for 

the second measurement set. Thus a sample2
~v , for the vector v2, can be easily created 

(according to Eq. (7)). One can now consider a limitation of the sample to only such elements 
that correspond with measurements concerning the parameter [ ]k2X . Such sample can be 

denoted as [ ]Tk
l

kkk vvv ~,...,~,~~
212 =v  (l is a number of observations concerning [ ]k2X ). Without 

losing generality, one can assume that all l elements of the vector x2 that were the basis for the 
computation of  k

2
~v  are direct measurements of the kth point height. Thus [ ]( ) [ ]( )kj EE 22 Xx =  

(where lj ≤≤1 ). Since additionally [ ]k2

~
X  = [ ]k1X̂ then 
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[ ] [ ]( ) [ ] [ ]( ) )~(ˆˆˆˆ
1212
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can be regarded as an R-estimator of the vertical displacement of the respective network 

point. The value )~(ˆ kR vE can be computed applying the formula (5)  

[ ] [ ]( )
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k
i

kR medvE vv ~~
2

1
)~(ˆ      (10) 

In theory, such displacement estimator has all properties of R-estimators for example it is 
robust for outliers (as it was mentioned in the previous section the estimator is robust if 5<l ) 

The presented way of estimation is a good solution if reference marks are stable (or if only a 
few marks are not, taking into account robustness of the method). All reference marks cannot 
be guaranteed to be stable before such stability is controlled, i.e., before pointing out stable 
reference framework (what is the main task of monitoring process). Thus, the estimator Eq. 
(10) is not a good solution for stability monitoring problem. In such problem, it is also better 

to compare “raw” observation sets from two epochs than to use estimators 1X̂  from the first 

one (if X
~ ≠ 1X̂  then one can avoid “bad” influences of observations that do not concern a 

particular reference mark).  For such reasons, the estimator Eq. (4) seems to be the best 
application of R-estimation in a stability monitoring process. Thus one should create two 
samples k

1
~v  and k

2
~v  for all particular reference marks and for each epoch, respectively. The 

initial values [ ]kX
~

 can be computed on the base of the first observation set taking into account 

only observations that correspond to the elements of k
1

~v . The shift k∆  between the mentioned 

samples, which can be regarded as a vertical displacement of the reference mark, can be 
estimated applying the formula Eq. (4) written in the more convenient, following form  

[ ] [ ]( )j
k

i
kR

k med 12
~~ˆ vv −=∆     (11) 

where ljli ≤≤≤≤ 1,1 .  Such computed shifts can be a basis for pointing out stabile 
reference framework. Reference marks can be regarded as stabile if respective estimated shift 
is inside of the interval assumed for random errors. 
  

4. Numerical Examples 

4.1. Example 1 

Let us consider a leveling network that consists of three reference marks A, B, C where 
][000.1 mH A = , ][000.2 mHB = , ][000.3 mHC =  and one unknown point 1 (it can be also 

regarded as a part of a bigger leveling network). Let three height differences (between each 
reference mark and the unknown point) be measured and let the measurement be carried out 
two times in two different epochs. Let 

[ ] ][1 0013.19997.19990.2 m
T =x  
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be a vector of the first measurement results (it is simulated under assumption that standard 
deviation of measurement ][001.0 m=σ  and results are normally distributed). Thus it can be 

computed ][000.4ˆ
1 mH LS

I = . Let now  

[ ] ][2 0158.10155.20140.3 m
T =x  

be results of the second measurements (it is assumed that the vertical displacement of the 
point 1 is equal to 0.015 [m]; still ][001.0 m=σ ).  The mentioned vertical displacement can 
be estimated applying Eq.(10) and one can obtained 

[ ] [ ]( ) ][0149.0)~(ˆˆ 1
1112 mvEE RR ==− XX  

The value presented here is very close to the true one 0.015 [m].  The displacement can be of 
course estimated applying the classical LS method. Then it can be calculated  

][0151.0ˆ
1 mH LS =∆  which is also a good assessment of the true displacement (the difference 

between those two estimates cannot be big since the sample is very small and the observation 
sets are free of outliers (Rouseeuw and Verboven 2002; Duchnowski 2008)).  

Let now the first observation in the vector x2 be disturbed with a gross error ][02.01 mg = . 

Then [ ] ][2 0158.10155.20340.3 m
T =x , and the presented displacement estimators can be 

computed as ][0248.0)~(ˆ 1 mvER =  and ][0218.0ˆ
1 mH LS =∆ , i.e., they both failed (the R-

estimator failed because the sample is too small (l = 3 < 5); the LS estimator since that kind 
of estimates are not robust for outliers in general). However there is another way to estimate 
the displacement. One can consider the “raw” sets x1 and x2 and apply the R-estimator from  

Eq. (11). Then ][0165.0ˆ
1 mR =∆  which is much better assessment of the displacement (one can 

mention that for the original, not disturbed, observation set x2  it is ][0150.0ˆ
1 mR =∆ ). What is 

more, if ][10.01 mg =  then it is still ][0165.0ˆ
1 mR =∆  (in contrast, ][0648.0)~(ˆ 1 mvER =  and 

][0484.0ˆ
1 mH LS =∆ ).   

4.1. Example 2 

Let us consider a leveling network established for detection of vertical displacements. Let the 
network contains of four reference marks and let stability of those marks be controlled. Let all 
height differences between the reference marks be assumed as normally distributed with 

][001.0 mσ =  and let they be measured twice. If the first and the fourth reference marks 

moved vertically and the displacement values are assumed as ][025.01 m=δ  and  

][005.04 m−=δ  respectively, then two measurement results can be simulated as follows 



  

 

 7 

























−
−

−
−
−
−

=

























=

























−
=

1100

1010

0110

0101

1001

0011

and,

9965.0

9959.0

0008.0

9742.0

9716.1

9742.0

9999.0

0002.1

0001.0

9983.0

9994.1

9984.0

][

2

][

1 Ax,x

mm

 

To find out the stabile reference framework one can eliminate those reference marks which 
moved vertically. Such movements (displacements) can be estimated with the R-estimator Eq. 

(11) (the vectors  k
1

~v  and k
2

~v  (for 4,...,2,1=k ) can be  created taking initial values [ ]kX
~

 

computed, for example, on the basis of the first observation set). Thus it can be computed that 
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The obtained values of displacements are close to the assumed ones (as for the first and the 
fourth points). Taking into consideration the accuracy of the measurement ( ][001.0 m=σ ) 
those two points cannot be regarded as stabile. It should be pointed out that also that time the  
R-estimator (11) shows its robustness (since two network points are assumed to be displaced 
vertically some results can be regarded as outliers).  

The example presented above is rather simple but it illustrates the general idea of R-
estimation application to monitoring of reference mark stability itself. The method is intended 
to be improved by the author. 

5. Conclusions 

R-estimation can be a useful statistical tool in some geodetic problems. It can be an 
alternative for classical approach to geodetic observation elaboration (e. g., for the LS 
method). Presented R-estimators Eq. (10) and Eq.(11) can be successfully applied to 
displacement detection herein leveling networks. As for the robustness for outliers the  second 
estimate seems to be more useful (the first one can also be if only the observation number is 
high enough).  
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