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Abstract: The deforming soil mass of two major lignite minesGreece is being monitored
by conventional underground and surface methodmeha inclinometers, total station
surveying using control targets and differentialSS®hile the inclinometer data can indicate
the early stages of the landslide process, it pewvilittle information about regressive and
progressive movements of the soil mass under ceratidn. Thus, the effective monitoring
of mine benches is based solely on surveying diftes paper describes two different
approaches for the detailed analysis of data tdigiréhe deformation rate of the soil mass. In
the first approach, univariate time series analigsissed to transform the deformation rate of
each survey target into an appropriate ARIMA modék main limitation of this approach is
the white noise which is generated when dealindy Wotv deformation rates. The second
approach is implemented through neural networksaafekd forward type is described. Both
approaches are implemented through in-house des@lopen source software and results are
given using data from the lignite mines.

1. INTRODUCTION

Two major lignite extraction sites are situategauthern and northern Greece. The deposit at
both mining sites has similar geological and med@ncharacteristics, consisting of
successive layers of low-grade coal and clay medgerThis layered structure constitutes an
important discontinuity of the soil mass. As miniogntinues, the equilibrium of the stress
state is disturbed, so highwalls and non-workingches have being deformed. However, the
stability of highwalls is controlled by overall dgs, since the benches are kept wide and the
total slope angle is maintained as low as possiti@sequently, the deformation of highwalls
is merely regressive and no monitoring system lasgbestablished. On the contrary, non-
working benches are the most vulnerable to collapand historical data verify this fact.

The typical mining cycle includes excavation of 20ngh benches with bucket wheel
excavators (BWE), transportation of coal maternjatbnveyor belts to central stacking places
and haul-backing of gangues. It must be emphasizat occurrences of sudden energy
release, like excavation by means of explosivessamisinic waves are quite rare; therefore,
these attributes are not taken into account byatladysis that follows.
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The monitoring of non-working benches has being lemented by two independent
approaches. The first one comprises mobile inclietem probes that survey near-vertical
boreholes. The data collected by this processasd @isr the detection of the depth at which
the main sliding surface has formed. These arewsd to monitor the rate of movement at
its early stages. However, as the deformation issgs, the underground installations tend to
fail, giving no more data to the monitoring prograiihe second monitoring approach has
being implemented by means of terrestrial and spgmmlesy. This comprises the most
practical monitoring procedure, since the colletitid the deformation data is continued up to
the collapse of the bench. In particular, a largenber of control targets are established at
suitable locations on the deforming soil mass. Tisercessive distance measurements of the
control targets from another stable point in spaoe time yield the deformation rate of those
targets, which extrapolates to the rate of moveroétite bench.

The analysis of various deformation cases oveing [meriod of time led to a rule of thumb,

concerning the maximum allowable deformation ratebenches in the particular mines.

According to Leonardos (2003), when the rate of emo@nt exceeds the threshold value of
10 -""“-"'"»I,-*ﬂ.ﬂj_,, the bench is under a critical regime and remediahsures should be taken
immediately.

The above methodology is not adequate to addressrdblem of bench failure, whether this
failure results to a total collapse of a portiortlté soil mass or to the termination of bench’s
operational life. The rule of thumb was effectioe & number of cases, while for others slope
failures were reported. Therefore, there is a feednderstanding the major parameters that
adversely influence the deformation rate of a ngnsiope and identifying their critical
values. Additionally, data collected by surface anderground methods must be associated,
as both describe the deformation in a complete way.

In light of this notion, two different mathematigadocedures for the analysis of deformation
data are presented in this paper. In the first@gugdr, univariate time series analysis is used to
transform the deformation rate of each survey tang® an appropriate ARIMA model.
Univariate time series analysis works on surveydata collected over long periods of time
and thus, the short term prediction of future defmion rates is quite feasible. Its main
purpose is to simulate the mechanism that initiates preserves the deformation of benches.
The second approach is implemented through newtdanks. A feed forward neural
network type is combined with decision trees tostarct general rules that deformation data
follow. Both algorithms are developed and implenadrthrough open source codes. Section 2
of the paper describes the time series analysionpeed on data from the mine. Section 3
describes the development of a single and mulgdaerceptron neural network approaches
and results are given using data from the mine®llyi, Section 4 summarises the work and
provides future directions in this work.

2. TIME SERIESANALYSIS

A deforming soil mass can be mathematically descrifis a complex multivariate problem. It
is influenced by its geometrical design and varimeshanical and hydraulic properties, like
the bench height, the shear strength of the slidingace and the pore water pressures. In
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simple terms, when a process combines all the absseciated variables into one super-
variable and the behavior of this super-variablemiedeled over time, a time series is
generated. The great advantage of this proceduhe issduction of a multivariate problem to
a univariate one. Additionally, the stochastic natof time series is capable of modeling the
errors that accompany the measurements of the -sapable. However, by this fusion

mechanism, information related to the influenceath parameter on the overall problem of

deformation is lost forever.

The frequent change of the bench stability pararaatereflected on the rate of movement
that accompanies each control target of the sungegionitoring system. Thus, the rate of
movement is the suitable super-variable for theetgaries approach. The application of time
series analysis over deformation rates for a bé@m¢he Megalopolis lignite site, yielded the

results of Figure 1.
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Figure 1 - Deformation rate of bench in Megalopbgsite mine

In Figure 1, the solid curve describes the ratmovement of one control target that is located
at a lignite bench in Megalopolis mine site. By lgnimg the data with an ARIMA procedure
(the analysis has been conducted by in-house deselsoftware), the corresponding time
series model takes the form of equation (1):

V. =2V,_, — Vi, — 045(V,_. —2V,_, + V,_; — 10.8) + WN, + 10.8 1)

t
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It is seen that the deformation rate at any tiftie,can be modeled as a combination of
previous deformation rated;(, throughV,_;) and the associative noit&N, that describes
the errors of the measurements. The constant vaheethe parameters of the model and are
estimated by an appropriate algorithm, such asribments’ or Monte Carlo’'s method (Box
& Jenkins, 1976). By plotting equation (1), depictey the dotted line in Figure 1, and
superimposing it to the measured data, the applisalof the generated model can be
assessed.

The data presented in Figure 1 corresponds tote stgprogressive movement of the bench.
In situations like this, future values of defornoatirates are strongly connected to previous
ones. Thus, the time series analysis is applietl sitccess. However, when the bench is
deforming with low rates, the autocorrelation fuoatis statistically zero most of the time.
So, an appropriate stochastic model cannot be ruasd.

3. ANALYSISWITH ARTIFICIAL NEURAL NETWORKS

Artificial neural networks represent a numericalalgsis method that uses iterations to
converge to a proper solution. In general, therdbl solution minimizes an appropriate
error function. The network’s architecture reserabtbe brain in that it consists of a
respectable number of computational units thahaykly interconnected via weights.

3.1 Thestructure of the simplest neural network

The most basic neural network is the perceptrorgéideet al., 1996). It is solely used to find

a solution for a problem that is linearly separabl&us, the perceptron is capable of

approximating functions that produce a line in Iace, a plane in 3D space or an imaginary
hyperplane in multidimensional spaces.

For simplicity, it's assumed that the stabilityaslope depends on two major parameters; the
burden and the pore water pressure. Burden isish@nde between the face of the slope and
its major tension crack. The water pressure isuastat with standpipe piezometers. This
slope is stable when the deformation rate is bedawreshold value. However it is likely to
fail when this threshold is exceeded. The analg$itistorical data reveals this threshold
value to beto Ty Table 1 gives a subset of relevant simulated oreasents.

Burden (m) Water Pressure (at) Deformation Rate™{™ f.:m}-)
3 2 8
8 0.8 12
7 1.2 10.5
7 0.7 6.4
8 14 13.1
8 0.2 7.9

Table 1- Simulated data regarding slope stability
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Figure 2 shows a geometrical (left) and a matharak(right) representation of the suitable
perceptron.

b Mathematical Presentati
X1 = burden W1
Input = in- -w; + b
- output

f:activation function
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Figure 2 - Rosenblatt’s perceptron

Using the in-house developed open source code MbldAoLayer Perceptron) with the data
of Table 1, the perceptron learning rule (Rosenbl&58) iterates 217 times, calculating all
three parameters of the model, namely= 8, w, = 31.49 and b = —89. Now, when a new

set of burden and pressure is presented to theoretwior example 10m and 0.5at, the
perceptron’s response is the expected one, progluzivalue of deformation rate below

10 mm{du},.

3.2 Multilayer perceptron neural network (MLP)

Figure 3 presents a more general and realistic; caseading perceptrons. The Multilayer
perceptron neural networMLP) is suitable for solving non-linear problemshem an
appropriate learning algorithm exists (Battiti, 229This algorithm is the backpropagation
and the learning scheme of the algorithm comptisegollowing steps:

» the memory of the network, i.e. the weights andésareceives random values

« the input is propagated towards the output and whesaches that point, the error
function is calculated.

» the error is propagated towards the first percepdfdhe bank

» all weights and biases are updated.
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Figure 3 - Cascading Perceptrons or Multi-LayeicBptron

However, an important problem is that the architextof each adjacent perceptron in the
bank is completely unknown beforehand. Furthermanegstablished method for calculating
each perceptron’s dimensions does not exist. Aaogrtb Witten and Frank (2005), there

must be a relationship between a decision treeticaried from the same instances that are
used for the MLP training. Therefore, the inititlusture of the MLP bank could be one that
resembles the decision tree’s structure. Additignal more sophisticated network could be
constructed by pruning the initial decision tree.

3.3 Modeling bench behavior

Table 2 gives an example of geometrical and geateahdata that was collected in order to
assess the deformation rate of a lignite slopdatemaida extraction site.

Instances | 4 | > | 3| 4| 5| .| 77 | .| 100
Parameters
Slope height (m) 19 18 19 20 17 19 18
Slope angle (degrees) 65 71 69 YO0 65 70 67
Burden (m) 9 12 13 6 13 9 8
BWE position 3 3 2 2 4 |- 1] 2
Inclinometer (mm) 147 82| 14p 82 146° 147" 82
Pore pressure (psi) 1883 165 1y1®.8| 17.3| ~ | 16.1| ~ | 18.2

Target Output
| Deformation Rate (mm/day)24.27] 20.55] 9.95| 3.76] 10.96] | 16.12| |5.91]

Table 2 - Parameters for modeling slope behavior

In Table 2 it is assumed that 6 independent vaggahre adequate to describe the deforming
state of the slope. The combination of slope heighggle and burden indicates the unit
volume of soil mass that slides. The bench numhewloich the nearest BWE operates plays
the role of an instant disturbing factor. Last dt least, two parameters from the
underground monitoring program are taken into awtowhe first is the cumulative
displacement of the inclinometer probe at the deptine main sliding surface. The second is
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the pore water pressure at the same depth. Justsatsof the 100 examples is presented in
Table 2. The goals of the analysis that followsjolhis implemented by the in-house open
source code “MLP” are

» the building of an intelligent system, which is abfe of learning by example and
performing appropriately upon similar cases

» the prediction of deformation rates, as an awarth@fatter training procedure

Data in Table 2 is represented by the flat file Sjpe”. This file is fed to the “MLP” code
and a decision tree is generated. Tree’s struédllmvs the architecture 1 — 2 — 4, where each
number describes the corresponding tree nodes topmdown. It's assumed that the same
architecture must be followed by the neural netwts#lf, as a first approximation of its own
architecture. Thus, Figure 4 shows a geometricabenof what is constructed in computer’s
memory

NN
I'/'\‘I

input < S

parameters sZ output

i

Figure 4 - MLP for deformation rate training & prettbn

The “MLP” code has to evaluate a number of 41 menpmarameters (34 weights and 7

biases). After the end of execution those parameieg calculated and the program is fed
again with a new instance, this time without itsgé value. This instance assumes the
following values; slope height = 17m, slope anglé0=degrees, burden = 5m, BWE position
= 3, inclinometer = 80mm & pore pressure = 16.1{3%ie response of the network is

2.79mm/day, when the expected value is 3.5mm/day.

The final stage of analysis is concerned with tBevaluation of network’s architecture.
According to Witten and Frank (2005), a large numbknetwork parameters result to a
network that is highly specialized on its own traghdata, a situation that is characterized as
the overfitting problem (Frank, 2000). Thus, bymng the initial decision tree, the new 1 — 2
— 2 tree is constructed. Ultimately, the revisedraknetwork has the architecture 6 — 2 — 2 —
1 or 23 memory parameters have to be calculate@r ftie end of execution, the network is
fed with the previous case data and its respon8elimm/day, which is really close to the
expected output.
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4. CONCLUDING REMARKS

The challenging issue of modeling the deformatite 1of soil mass has been approached by
two different methods. Time series analysis budddynamic stochastic function, based on

the data at hand; when the trend of data chanigeduhction adapts itself to the new status.

However, the building process is not based solalyhe underlying data, as it makes use of

statistical assumptions that do not hold in evémguenstance.

On the other hand, the neural network approach wdedthe modeling without prior
information about the data or any statistical agsions. After a number of iterations, the
memory parameters — weights and biases — are c¢itpagcording to the stimulus they had
been given. It's solely a data driven method tfeat be applied with success to deformation
problems in general.

Future work will concentrate on more neural netwinaining algorithms and optimization of
nets and decision trees.
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