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Abstract. Adjustment and testing of a combination
of stochastic and nonstochastic observations is ap-
plied to the deformation analysis of a time series of
3D coordinates. Nonstochastic observations are con-
stant values that are treated as if they were obser-
vations. They are used to formulate constraints on
the unknown parameters of the adjustment problem.
Thus they describe deformation patterns. If defor-
mation is absent, the epochs of the time series are
supposed to be related via affine, similarity or con-
gruence transformations. S-basis invariant testing of
deformation patterns is treated. The model is exper-
imentally validated by showing the procedure for a
point set of 3D coordinates, determined from total
station measurements during five epochs. The mod-
elling of two patterns, the movement of just one point
in several epochs, and of several points, is shown.
Full, rank deficient covariance matrices of the 3D
coordinates, resulting from free network adjustments
of the total station measurements of each epoch, are
used in the analysis.

Keywords. Geodetic deformation analysis, Time
series, 3D coordinates, Full, singular covariance ma-
trices, Nonstochastic observations, S-basis invariant
testing.

1 Introduction

Geodetic deformation analysis is about change of
form and size of the earth’s surface or of objects
on, below or above it, and also of the relative posi-
tion and orientation of the objects. The objects to
be analysed are represented by points that constitute
a three-dimensional geodetic network. It is nowa-
days common practice to use total stations, GPS re-
ceivers and other devices for the analysis. If process-
ing the measurements results in three-dimensional
X, y, z coordinates, these can be presented in two-

dimensional graphs, showing the displacements in
time or in space or both. It is, however, generally
difficult to come to statistically sound conclusions by
analysing the graphs. Computational methods to test
statistical hypotheses are desirable. For two epochs
methods are available to perform an adjustment of
the coordinates, taking into account their covariance
matrix, and to perform hypothesis testing (Heunecke
et al, 2013, p. 4941t.). The analysis is generally not
invariant for the used S-basis (Velsink, 2015¢).

In this paper an adjustment model is proposed
that analyses a time series of 3D coordinates, tak-
ing account of the covariance matrices and analysing
the deformations of all points and all epochs simul-
taneously, by computing statistics of deformation
patterns and testing them. The model can be ap-
plied to any 3D geodetic network, observed quasi-
continuously (i.e. with permanently installed sensors
measuring frequently). Examples are the monitor-
ing of the movement of a subset of points through
all epochs, or the periodic oscillation of a subset of
points.

In the next section the problem is defined. After
describing existing approaches in section 3, section 4
describes the solution set-up. The adjustment model
is treated in section 5. The adjustment itself, the de-
formation testing and the S-basis invariance are han-
dled in section 6. Section 7 gives an experimental
validation of the model.

2 Problem definition

The problem addressed in this paper is the adjust-
ment and testing for deformations of a time series of
three-dimensional coordinates of a geodetic network,
with a covariance matrix of the coordinates that is
full and generally singular, because each epoch of the
time series is adjusted as a free network.

The described problem will be handled by con-
structing a least squares adjustment model. As a
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practical application to show the usability of the
model, the continuous monitoring by a total station
of points, situated on built structures that are prone
to deformations, is analysed.

3 Existing solutions

Heunecke et al. give an overview of existing ap-
proaches for deformation analysis of two time epochs
of deformation measurements (Heunecke et al, 2013,
p- 521) . The general approach is to compute
displacement vectors between coordinates of two
epochs and their covariance matrix. Different ap-
proaches exists to analyse the displacement vec-
tors, e.g. by using 95%-confidence ellipsoids af-
ter a least squares adjustment (Kaminiski and Nowel,
2013; Caspary, 2000) or a Ll-norm adjustment
(Chen, 1983; Caspary and Borutta, 1987), or us-
ing constraints on common points and analysing
the quadratic form of the weighted estimated least
squares residuals (Heunecke et al, 2013, p. 5001t.).

Heunecke et al. give also methods to analyse time
series (Heunecke et al, 2013, p. 548) . They do not
take advantage of the covariance matrices of the co-
ordinates and do not perform the analysis for all three
dimensions (x, y and z) simultaneously. As a conse-
quence the choice of datum definition and the solu-
tion’s invariance for it, are not addressed.

A comprehensive 3D multi-epoch model is treated
by Caspary (2000, p. 1644T.). It takes care of singu-
lar covariance matrices and incorporates determinis-
tic deformation models. It assumes all epochs to be
defined relative to the same S-basis, which has to be
defined by points, measured in all epochs. Testing
is treated for the sequential adjustment case. Quality
description of the tests is not treated.

4 Solution set-up

4.1 Form and size, position and orientation

The subject of geodetic deformation analysis is the
change in time of the form and size of objects, and
also of the relative position and orientation of the ob-
jects. Form, size, relative position and orientation
can be recorded by Euclidian x, y, z coordinates. It is
assumed that the coordinates are normally distributed
with a probability density function, which is fully de-
scribed by a known covariance matrix, except for the
first moments. This matrix may be singular, e.g. be-
cause it stems from a free network adjustment. If

there are reference points, i.e. points that are con-
sidered not to be influenced by the deformation to be
analysed, they are part of the geodetic network, and
are analysed simultaneously with the object points.

The Euclidian coordinates describe the position
and orientation of the network relative to the coordi-
nate origin and axes as well. These, however, are not
subject of the analysis. Their uncertaintity, as it is re-
flected in the covariance matrix, has to be eliminated
from the analysis. This is realised in the adjustment
model by a congruence or similarity transformation
of the coordinates of each epoch to the coordinate
system of the reference epoch. It is shown that af-
ter these transformations, testing of deformation hy-
potheses can be done independently from the S-bases
chosen for the individual epochs. The first epoch is
chosen in this paper as reference epoch, but any other
epoch as reference epoch would give the same anal-
ysis results.

The choice between a congruence and a similar-
ity transformation depends on the question, whether
the scale (unit of length) is considered stable between
epochs and essential for the analysis.

The set-up of the adjustment model, with trans-
formations between the epochs incorporated into it,
not only removes the influence of origin, axes and
scale of the reference system on the analysis. It
also makes it possible to test, without additional S-
transformations, for deformations of all kinds of sub-
sets of points, independent of their being reference
or object points, or being part of the S-basis or not.
It is possible to include in one hypothesis that is to
be tested, both reference and object points, and both
points within and outside the S-basis.

4.2 Nonstochastic observations

The adjustment model is built as a model of observa-
tion equations with the coordinates as observations,
arranged according to the epochs. The parameters
are the expectations of the coordinates of all epochs.
Each point has for each epoch different coordinates
in the parameter vector. Also the transformation pa-
rameters of each epoch relative to the previous one
appear in the parameter vector.

Constraints are stated concerning the coordinates
of all epochs. In the case of stability analysis the con-
straints state that the expectations of coordinates of
the same points in different epochs are equal. These
constraints are added to the observation vector as
nonstochastic observations, following the approach
of Velsink (2015b). If coordinates are assumed to be
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subject to some kind of deformation, for example a
linear movement of one or more points, or a defor-
mation pattern with a periodic character for a subset
of points, the constraints add extra unknown param-
eters, for example the linear rate of movement, or the
coefficients of the periodic pattern, to the parameter
vector.

The advantage of using nonstochastic observations
is that testing of deformation hypotheses is done in
the same way as testing of one- or multi-dimensional
hypotheses on biases in the other observations. Least
squares estimates of the deformations are determined
using standard formulas. Also minimal detectable bi-
ases can be computed with standard formulas, giving
information on the deformation sizes that can be de-
tected with the tests.

4.3 Full, singular covariance matrices

Observations, for example direction and distance ob-
servations of total stations, and their stochastic model
are used for a deformation analysis, which is per-
formed in two phases. In the first phase the direction
and distance observations are adjusted for each epoch
separately. The results are coordinates and their co-
variance matrices for all epochs. The second step is
the subject of this paper: the deformation analysis of
the coordinates of many epochs. The covariance ma-
trices of all epochs have to be used (Tienstra, 1956,
p- 154). These matrices are generally full matrices
(no or few zeros) and singular, because each epoch
is adjusted as a free network, not connected to con-
trol points. The adjustment model of section 5 can
handle full, singular covariance matrices.

4.4 Solution characteristics

An overview of the solution characteristics can
now be given. The most relevant terms are listed
below and the solution procedure is illustrated by a
Nassi-Schneidermann diagram (figure 1).

A geodetic network per epoch is a set of points on,
above, or under the earth’s surface, in this paper
assumed to be represented by 3D Euclidian co-
ordinates.

Form and size of a geodetic network (and their
changes in time) are of interest, not the posi-
tion and orientation relative to the reference sys-
tem. Transformations are therefore included in
the adjustment model.

Collect input:

m;, D{m,}: measurements and their precision (covari-
ance matrix) of the geodetic networks of
all epochs i

Adjustment of measurements of every epoch as
free network (not treated in this paper)

Collect intermediate results:

b;, D{b,}: coordinates and their precision (covari-
ance matrix) of the geodetic networks of
all epochs i

Determine deformation pattern

Equate corresponding points in epochs using
nonstochastic observations

No deformation?
true false

Add deformation pattern to equated

@ points using matrix Zy of eq. (16)

Describe transformations between epochs us-
ing i.a. nonstochastic observations

Perform adjustment using model (28), with it-
eration if necessary

Perform testing

Null hypothesis
rejected?

true false
Formulate alternative hypotheses
Test alternative hypotheses and select &

best one

Formulate new deformation pattern

New deformation pattern formulated?

Determine minimal detectable deformations
(m.d.d.) as description of deformation analysis
quality

Output of adjustment and testing results

Output of m.d.d.’s

Fig. 1: Solution procedure

Stability assumes the expectations of coordinates
to be equal through all epochs, except for the
above mentioned transformations.

A deformation pattern is the relation between the
geodetic networks per epoch, formulated by
giving the expectations of coordinates through
the epochs using mathematical functions, de-
scribed by nonstochastic observations, which
depend on unknown deformation parameters,
for example a linear movement rate, or the coef-
ficients of a series expansion of a periodic func-
tion.



Inside or outside the adjustment model we put the
description of the deformation. If it is inside,
nonstochastic observations describe the defor-
mation pattern, and extra deformation parame-
ters are included in the parameter vector. If it is
outside, the adjustment model assumes stability
and no extra deformation parameters are in the
parameter vector. The hypothesis of stability is
tested against alternative hypotheses, describing
deformation patterns, by appropiate test statis-
tics, which make use of the nonstochastic ob-
servations to determine matrix Zy of eq. (16).

Singular, full covariance matrices result from the
free network adjustments of each epoch, and are
used in the adjustment model. If only coordi-
nates are available for each epoch, a substitute
matrix, for example a unit matrix, is used as co-
variance matrix, which yields sub optimal ad-
justment and testing results.

5 Adjustment model

5.1 Observations and parameters

The adjustment model is built taking as:
e observations:

1. cartesian 3D point coordinates of a geodetic
network and their covariance matrix, avail-
able for at least two epochs. For the first
epoch they are assembled in vector a; (an
underlined variable indicates a stochastic
variable) with the covariance matrix Dfa, }.
For the second and later epochs they are as-
sembled in vectors b, with i the epoch num-
ber, which runs from 2 to p with p the num-
ber of epochs. Each b, has a covariance ma-
trix D{b,}:

2. nonstochastic observations z;, describing
constraints on the transformation parame-
ters; their covariance matrix is the zero ma-
trix;

3. nonstochastic observations z,, describing
the deformation pattern; their covariance
matrix is the zero matrix.

e unknown parameters:

1. expectations of cartesian 3D network point
coordinates, for each epoch assembled in

vector ¢; of epoch i. Vector ¢ takes all epochs
together:

c:(cl,'--,cp)T. (D)

2. vector of transformation parameters f, subdi-
vided in subvectors f;;_; for the transforma-
tion in each epoch interval between epoch i
andi—1,withi=2,...,p.

3. additonal parameters V to describe the trend
function of the deformation, see section 4.2.

5.2 Nonlinear adjustment model

In the adjustment model the expectations of all point
coordinates are expressed in the reference system of
the first epoch, and are parameters in vector ¢. The
observed coordinates in the first epoch are taken to-
gether in vector a,. We have:

Ela} =¢; =Ppc, (2)

with E{.} the expectation operator, and P; the matrix
that selects the points of the first epoch from ¢. P,
has only ones and zeros. The observed coordinates
b, in a following epoch i (i = 2,---, p) are assumed
to be in a separate reference system, indicated by a
superindex (i): '

b, = b, 3)

These coordinates are transformed with a vector
function ¢; ;_; to the reference system of epoch (i—1):

. )
bV = g (0 £y, )
then with ¢;_; ;_» to the reference system of epoch (i—
2), and so on, and we get the transformed coordinates

o )
©2,1C - (@iim1(b; Fiim1), ), 2.1)s

and:

Ela}=c¢; =P;c. (6)

P; selects ¢; from c. It follows that:
E{@a1(- - (@ii-1(b, £iio1), ), B0} = Pie. (1)

Hopping from epoch i through all intermediate
epochs to the first one, is chosen, and not a direct
transformation to the first epoch, because it is as-
sumed that in general more common points are avail-
able for successive epochs.



Following the approach of Velsink (2015a), the
transformation ¢;; between epoch i and j, is of a
general form, for example an affine transformation,
which is changed to another type of transformation,
for example a similarity transformation, by the use
of constraints. These constraints are formulated as
nonstochastic observations:

2y = fp(f), (3)

for which zeros are assumed as observed values.

The deformation pattern is described by a vector
of nonstochastic observations z; and a deformation
function ¢y, which gives a relation between the ele-
ments of ¢ and the elements of a vector of deforma-
tion parameters V:

Z; = {d(C, V) (9)

For z, we assume zeros as the observed values.

From equations (2), (7), (8) and (9) follows the
following system for p epochs:

Efa} =Pie,
E{py1(b,,f21)} = Pae,

: (10)
E{g(b,. D)} =Pye,
Z = gD,
Zg = é’d(c’ V),

with
g(l_)p, f) = ‘102,1("'(90p,p—1(l_’[,9 fp,p—l), )’ f2,1)~

A point may be present in an epoch, but missing in
one or more other epochs. This is handled by matrix
P;. The S-basis definition of an epoch is arbitrary
(see section 6.3) and may be realised by only a few
points, by many points, or by all. There can even
be no S-basis, i.e. the covariance matrix is regular,
and the S-basis can be considered to lie outside the
geodetic network. The fact that a point is missing, be
it in the first or in any other epoch, does therefore not
pose any problem for the deformation analysis with
model (10).

5.3 Transformations
5.3.1 Affine Transformation

As general form of transformation ¢;; the affine
transformation is taken, written as:

x! u’”
vy =R |V | +te,
z7 w’
air aiz a3 Iy (11)

R=[ax axn axn|,t=|t],
as; asxn  as Iz

e:(l,l,...,l).

The column vectors u, v, w contain resp. the x-, y-, z-
coordinates of b; before transformation. The vectors
X, Y, z contain the coordinates after transformation.
R describes the rotation, shear and scale change of
the affine transformation, t the translation.

5.3.2 Congruence Transformation

Equation (11) describes a congruence (or rigid body)
transformation, if the nine coefficients of matrix R
meet the following six constraints:

aip
T ..
aiaizéii’ a;, =\|dap|, l’J:1’2’3’
a3 (12)
Jj=1i, 0; =1if i = j, otherwise ¢;; = 0.

In the following sections a linearised adjustment
model is derived. The linearised constraints are:

agi a?T OT 0
a 0 a 0

0 a0 20| A% 0

ro2 2| |Aayf=] ], (13)

a%% 0 0 0

1 Aaj

0 a)" o 0

o 0 af 0

where 0 is the (1x3) zero vector and a? (i=1,2,3) is
the vector of approximate values of a;. A indicates
the difference of the quantity concerned and its ap-
proximate value.

5.3.3 Similarity transformation

For the similarity transformation the affine transfor-
mation is constrained with five constraints. Three
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constraints state that the three rows of R are perpen-
dicular to each other. The two remaining constraints
state that the lengths of the first and second row, and
those of the second and third row are equal. The lin-
earised constraints are:

ol ol

a9 0 0
a)) 0 a) | (aa) |0
0 a0 Al ||Am|=]0|. (14
ad" a0 o | \Aas) |0
a0 -all 0

5.3.4 Approximate transformation

Before the adjustment, b, is approximately trans-
formed to b} in the reference system of a,, us-
ing equation (5). Likewise D{b.} is transformed to
D{b’} by applying the law of propagation of co-
variances. The approximate transformation param-
eters are determined as affine parameters, and sub-
sequently adapted to those of a congruence or sim-
ilarity transformation using singular value decom-
position (Velsink, 2015a). The transformations of
equation (10) are now differential transformations.
In each iteration step of the adjustment this is re-
peated with adapted transformation parameters from
the previous iteration step. Therefore as approximate
values for a;; in the constraints of the congruence or
similarity transformation we can take ag. = 0j.

In the following sections, if b, is written, b’ is
meant.

5.4 Linearised adjustment model

A linearised adjustment model is built for the de-
formation analysis. Linearisation of all equations of
system (10) is done with implicit differentiation rel-
ative to the observed vectors a,, b, (i= 2,---,p), 24,
and zs, and the unknown parameter vectors f, ¢ and
V.

The first and last two equations of system (10) are
linearised as:

E{pa,) =P Ac,
_ 04
Az, =( ac )OAC + (av )QAV.

We define for later use:

_ 0
Z; = (E)o, 6)
0 0
Z,= (%)0, Zy = (6_%)0'

The partial derivatives of the vectors ¢y and {; with
respect to the vectors f, ¢ and V are matrices. The
parentheses with zero (.)g indicate that approximate
values of the parameters have to be used to get the
values in the matrices.

For the equations with b, (i=2,---.,p) in system
(10) the linearised equations are:

B,E{A_bl} + F; Af; = P; Ac, 17
with the matrices B; defined as follows:
B, =By1B3s--- B, (18)

and with (j=2,...,i—1):

9¢;j-1 9¢;j-1
B = () =( J‘Z]-) )o>

0pjv1j b’

0pii-1 l (19)
Biisi = (—)o-

ob,

F; is defined for i = 2...p as follows:

Fi:(FZ,l,"'7Fi,i—170"",0)’ (20)

with (p-i) matrices 0 of zeros, which have the same
number of rows as F,;, and the partioning of F; in
columns in accordance with the partitioning of Af:

Af = (Ao, Ay, Moo Aypor). 21
For F;;_; (i=2,...,p) we have:

0pii-1

Fiioi=Bo1Bso---Bioji
il 2,1 B3 2, 1(0f”_l

- (22)

Matrix B;,_; for an affine transformation is given
by Velsink (2015a) as follows:

agl I agzl az3I
B =|ayl apl apll, (23)
agll agzl a231
with ag (i,j=1,2, 3) the approximate values of a;; and

I the (n X n) unit matrix and n the amount of points
inb.
=i



As explained in section 5.3.4, we can take ag. = 0y,
which results in a unit matrix for B;;_;, from which
follows, see equations (18) and (22):

B, =1
Fiio1=( Piil

8fi,ifl

(24)

)o-

Matrix F;;_; for an affine transformation is given by
Velsink (2015a) as follows:

B 0 0 €
Fiio1=]10 B 0 e], (25)
0 0 B e

where f3;, €1, €, €3 and 0 are all (n X 3) matrices, as
follows:
B; = (ug, vo, Wo); Uy, Vo, Wo are approximate val-
ues of u, v, w (the x, y, z coordinates in b,), which
can be transformed to make the barycentre the ori-
gin.

€, and €3 are analogous matrices as €; with ones

in the second, resp. third column,

0 is the (n x 3) zero matrix.
We define F as the null matrix 0 and put it together
withthe F;, i = 2...p of equation (20) into matrix F.
Analogously we take all P; together in a matrix P:

F=(F....F,)

T (26)
P=(P,... P,)
We define vector Ab as:
T
Ab = (Aay, Aby, ..., Ab,) . 27)

We can now formulate the linearised equivalent of
system (10):

Ab P -F 0)(Ac
Efaz:[y=|0 Z; o |[af]. (28)
AZd Zd 0 ZV AV

The covariance matrix of the observation vector on
the left-hand side consists of the covariance matri-
ces of a; and b;, i=2,---,p, as described in section
5.1, approximately transformed as described in sec-
tion 5.3.4, and zero matrices for the remainder if no

correlation between the epochs is assumed (which is,
however, not necessary to solve the model).

The model takes each epoch as a separate geode-
tic network: each point has a different point number
for each epoch, for example point A is called A; in
epoch 1, A, in epoch 2, etc. The hypothesis that no
deformation has occured is formulated by stating that

O = xA2 —xAl,
0=ya, = ya,
29
0=2z4, — 24, (29
etc.

The separate geodetic networks are linked together
in this way. Equation (29) gives the nonstochastic
observation equations (the zeros constitute together
vector z; and have a standard deviation of zero). The
number of rows of matrix Z, is three times the num-
ber of points. In each row there are zeros and one 1
and one -1 for respectively the coordinate of epoch
2 and epoch 1 (which are separate unknowns in the
parameter vector). There are no parameters V and no
matrix Zy.

Let us now assume that a deformation is present
for point A. Let it be a linear movement for which
we write:

0 = xa, — xa, + a1z,
0 =ya, —ya, +ayti2, (30)
0 =24, —24, +a;t2

The ay, ay, a, are unknown parameters, which enter
the parameter vector V, and for which a least squares
estimate is determined in the adjustment. 7, is the
time interval between epoch 1 and 2. The matrix Zy
is in this case a matrix with three columns and three
elements 1, on the rows of the three nonstochastic
observations mentioned, and with zeros on all other
positions.

We can also leave ay, a,, a, out of the adjust-
ment. Then the last column of the coefficient ma-
trix of equation (28) disappears. The null hypothesis
states now that there is no deformation. We test for
a linear movement by using Zy in the test statistic of
equation (34).

Generally the transformation between epoch i and
i—11is a similarity or congruence, not an affine trans-
formation. Matrix F; is constructed according to
equation (20) from matrices F;;_; as given in equa-
tion (22) for the affine transformation. Matrix Zy is
the matrix that describes the constraints for a con-
gruence or similarity transformation. The coefficient
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matrix of equation (13) or (14) is used to construct
matrix Z;.

6 Adjustment and testing
6.1 Adjustment

System (28) is a linear system of observation equa-
tions and can be solved by least squares. If suffi-
cient points are available in all epochs to determine
the transformation parameters, the coefficient matrix
is of full rank.

Because of the nonstochastic observations, and be-
cause of possible singularities of the covariance ma-
trices of a, and the vectors b,, the covariance matrix
of the observation vector of system (28) is singular.
To get a least squares solution of the system, at least
five methods are available that make it possible to
test nonstochastic observations in the same way as
stochastic observations (Velsink, 2015b):

1. The adjustment model is split into two parts
for the stochastic and the nonstochastic observa-
tions respectively, and a sequential adjustment
is applied.

2. A switch is made from the model of observation
equations to the model of condition equations.

3. The covariance matrix is regularised.

4. The standard deviations in the covariance ma-
trix that are zero, are replaced by values that are
very small.

5. The observations are orthogonalised and the

nonstochastic observations eliminated. A
follow-up adjustment determines the test quan-
tities.

Because the system is linearised, iteration is
needed to find the least squares solution. To start
the iteration good approximate values for all obser-
vations and all parameters are needed, which have
to satisfy the non-linear equations (10) and the non-
linear constraints of section 5.3.2 or 5.3.3. As de-
scribed by Velsink (2015a), in each iteration step
the approximate transformation parameters are up-
dated, using singular value decomposition. Also, in
each iteration step, all hi and their covariance matri-
ces D{b,} are transformed with the new approximate
transformation parameters to new coordinates b’ and
D{Q;} that are (for the common points) almost equal
to a, and in the reference system of a,.

In each iteration step the approximate values of all
observations, and of all parameters have to comply
again with the non-linear equations (10) and the non-
linear constraints of section 5.3.2 or 5.3.3.

6.2 Deformation testing

If one of the five methods, mentioned in the pre-
vious section, is used, standard methods for testing
can be applied with the formulas given by Velsink
(2015b). Also the nonstochastic observations can be
tested with the same formulas, which means that a
method of testing deformation patterns is provided.

If it is not sure whether there is any deformation, or
what type of deformation happens, a null hypothesis
Hy is formulated, where no deformation is assumed
(V is missing in system (28)), and an alternative hy-
pothesis H,:

Hy: E{Ay} = A Ax, 31)
H, : E{Ay} = AAx + ZLAV, (32)

where Ay, A and Ax are respectively the observation
vector, the coefficient matrix and the parameter vec-
tor of system (28). In A the last column of the co-
efficient matrix is missing and in Ax the parameters
AV. Zy is the last column of the coefficient matrix of
equation (28):
0
Z;=10 (33)
Zy

The alternative hypothesis is tested against the null
hypothesis, without the need to perform a complete
adjustment of (32), by using test statistic Zq (Teunis-
sen, 2006, p. 77):

I,= S 22 QT e ()
g is the number of columns in Zg and gives the
degrees of freedom of the test. o is the variance
factor of unit weight, and t are the reciprocal least
squares residuals as they follow from a weighted
least squares adjustment (Velsink, 2015a) and for
which holds, with € the usual least squares residuals
and Q, the cofactor matrix of the observations y:

1=

(35)

| >

=Q

Q; is the cofactor matrix of . Zg describes a testable
deformation pattern, if the product Zi' Q; Zy is a
regular matrix.



The probability density function of T, is a y2-dis-
tribution with an expected value of ¢g. The test is to
choose a significance level a, to compute the critical
value and to test, whether the computed value of Zq
exceeds the critical value. If this happens, the null
hypothesis is rejected (Teunissen, 2006, p. 78).

6.3 S-basis invariance

In Velsink (2015b) and Velsink (2015c¢) it is shown
that the test statistic of equation (34) is invariant for
a change of S-basis of the parameter vector x. It is
evident from the fact that ¥ can be computed from
the model of condition equations, which is dual to
the model of observation equations. In this dual
model the parameter vector x has been eliminated,
and therefore a change of S-basis of x doesn’t influ-
ence .

The test statistic of equation (34) is also invari-
ant for changes of S-bases of the observed coordinate
vectors a, and b, i=2,. .., p, if deformation patterns
are tested. To see this, model (28) is simplified and
reduced. To do this, we assume all observed vectors
a, and b,, and also the parameter vectors ¢; to con-
tain coordinates of the same points in the same order,
from which follows:

P = unit matrix. (36)
We also assume stability of all points, and therefore:
Ac; = Acj, withi,j=1,...,p, (37)

and we reduce Ac to a vector Ac with the coordinate
parameters of only one epoch. With matrix I, defined
with unit matrices I as:

L=(L...1)", (38)

we get: .
Ac=1,Ac. (39)

This means that the nonstochastic observations z;
disappear. Furthermore we assume that the non-
stochastic observations z are elimated. This can be
done by noting that the equation:

0 = Z,Af (40)

means that Af lies in the nullspace of Z;. If N is a
base matrix that spans this nullspace, we have:

Af = NAT, (41)

with Af a vector of coeflicients, which can be used
as the new vector of unknown transformation param-
eters. If, for example, Af contains 12 parameters of
an affine transformation and there are 5 nonstochas-
tic observations to constrain the transformation into
a similarity transformation, Af contains_7 transfor-
mation parameters. With the definition F = FN, it
follows that:

FAf = FAf. (42)

So if we use F Af instead of FAf in model (28), we
can omit the nonstochastic observations z;.

Because of the stability assumption, no parameters
V exist and no matrix Zy.

With (36), (39) and (42), model (28) is written as:

E{Ab} = I, Ac - F Af (43)

To eliminate E, we define matrix H as:

11 0 --- o
0O -1 1 --- 0

H=| . o s (44)
o ... ... -I 1

and the vector d, containing the difference vectors of
all epoch intervals, as:

d=H"b. (45)
Premultiplying equation (43) with H', we get:
E{Ad) = -H" F Af. (46)

This model has the same redundancy as model (43)
and yields the same least squares solution.

Let the vectors a, and b,, i = 2,...,p all have
been S-transformed to other S-bases. It means that
we have new vectors a} and b’, taken together in vec-
tor b’:

b =b+Sy, 47)

where ¥ is the vector of the differential transforma-
tions of the coordinate vectors of all epochs. These
relate, however, to the same degrees of freedom as
the transformations in Af. This means that we can
take S = F.

A proof for two epochs that test statistic (34) is in-
variant for changes of S-bases of a, and b,, by prov-
ing that t and Q; are invariant, is given by (Velsink,
2015c). The extension to more than two epochs is
possible by using reduced model (46). This model
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can be solved by switching to the model of condition
equations with matrix G, which is chosen to fulfil:

G'H'F =0, (48)

with R(G) the complementary space of R(H'F). Tt
follows with the same reasoning as given by Velsink
(2015c¢) that  and Q;, as they follow from solving
model (46), are invariant for changes in S-bases of
a, andhi, i=2,...,p.

The conclusion is that if hypotheses concerning
deformation patterns are formulated in terms of the
original model (28), and they can be reformulated in
terms of model (46), which is generally possible, test
statistic (34) is invariant for changes to other S-bases
of the coordinate vectors a,andb;,i=2,...,p.

A deformation hypothesis may concern a point
that is part of the S-basis definition and whose coor-
dinates are fixed with a zero standard deviation. No
S-transformation is needed to test such a point for
deformation. It is demonstrated by the example of
Velsink (2015b).

7 Experimental validation

The proposed model can be applied to the 3D mon-
itoring by GPS and total stations of deformations
of buildings, harbour quays, bridges, tunnels, land
slides, etc. The model gives the possibility to
compute statistics and to test hypotheses that de-
scribe complex deformation patterns, like the abnor-
mal movement of a subset of points through many
epochs, or the periodic oscillation of a subset of
points, for example caused by changes of tempera-
ture.

Location of points
457320 ‘ T e x

105 114
x L CRe
x 104 1"16
4573101 x 103 ”
x 102 905 17 % x
2 101 902 , X 901 118119
= [ x x
g 457300 904 903
8
=]
i
3 457290
x
x 1x24 123
457280 . 15
126

83250 83260 83270 83280 83290 83300

x-coordinate

Fig. 2: 15 object points, 5 instrument points

To validate experimentally the model, the monitor-
ing of some buildings is taken. To be able to judge
effectively the performance of the model, observa-
tions have been generated with known standard devi-
ations, to which artificially deformations have been
added. Fifteen points have been measured with di-
rection and distance observations from a total sta-
tion during five epochs. The fifteen points are posi-
tioned on three buildings (figure 2), which are mon-
itored because of construction works. The instru-
ment point is not fixed (not monumented). The ob-
servations are adjusted using the software package
MOVE3 (www.move3.com), resulting in x, y, z coor-
dinates and their covariance matrix. The network is
not attached to a control network.

A Matlab programme has been written to do the
computations. The observations have been generated
with the following standard deviations:

e directions: 0.3 mgon;

e distances: 1 mm;

e zenith angles: 0.3 mgon.

The precision with which a point is defined (idealisa-
tion precision) is supposed to be 0.5 mm, indicating
the precision by which a removable prism can be put
on a point.

First no deformation is put in the observations.
The adjustment model to test stability of all points
is created by adding for each epoch interval, for each
point and for each coordinate direction a nonstochas-
tic observation, i.e. 4 X 15 x 3 = 180 nonstochastic
observations:

0=Ac; — Ac,
0= AC2 - AC3
0= AC3 - AC4 (49)
0= AC4 - AC5

From these equations follows matrix Z; in equation
(28).

The epochs are joined together with similarity
transformations, which are realised for each epoch
interval by five constraints on the affine transforma-
tion parameters.

The model contains 425 observations (5 X 15 x 3
= 225 coordinates, 4 X 5 = 20 transformation con-
straints, 180 point constraints), and 273 parameters
(225 coordinates, 4 x 12 = 48 transformation param-
eters), which yields a redundancy of 152. Adjusting
the model leads to an overall model test of 0.60. With
a critical value of 1.004, based on the use of the B-
method of testing with a significance level of a one-
dimensional test of 0.1% and of 47% for the overall
model test, the null hypothesis is accepted.
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Table 1: Test of linear point movement over 5 epochs; val-
ues are per epoch interval

Stat. Est. def. (mm)

Pnt. X y z

101 709 09 1.1 1.0
103 169 -04 -05 -03
102 70 -01 -01 -05
104 47 -02 -03 -0.1

Then a movement of 1 mm in each epoch inter-
val, in the direction of each coordinate axis of one
point (point 101), is added and observations are gen-
erated. The same adjustment model as before is used
and leads to rejection of the null hypothesis. The
movement is then modelled with twelve nonstochas-
tic observations. Assume vector c(l’())l is the subvector
of vector c that contains the x, y and z coordinates of
point 101 in epoch i. Let vector a contain the move-
ments in x, y and z direction between epoch i and j,
and Aa the difference of a with its approximate value,
necessary for the linearised model. The following 12
nonstochastic observations describe the deformation.

0=AcY —Ac® + Aa

101 101
0=Ac? —Ac) +Aa 50)
0=Ac) - Acl) +Aa
0= Ac(;gl - Ac(]%)] + Aa

From these equations the matrix Zg of equation
(32) is deduced, and the alternative hypothesis tested
against the null hypothesis. The same test is used to
test for linear movement of all other points. The de-
formed point shows the largest value of the test statis-
tic (table 1 under “Stat.”), with a critical value of 12.6
and a significance level of 0.6 %. The estimated de-
formation (Velsink, 2015c, eq. (42)) in each epoch
interval is given in the same table for point 101 and
three other points with large test statistics. The es-
timated deformation of point 101 resembles closely
the values that have been put intentionally into the
coordinates, and the length of the deformation vec-
tor is even the same: 1.7 mm in each epoch interval.
Table 2 gives the minimal detectable deformations as
the lengths of the semi-axes of the ellipsoid deter-
mined by (Velsink, 2015c¢, eq. (44)):

oy = VoL Q:Zy Vo, (51)

with 1 the non-centrality parameter of the y*-
distribution and V| describing the minimal detectable

deformations. They give the deformations that can be
detected with the three-dimensional point test of five
epochs with a power of 80%.

Table 2: Minimal detectable deformations (m.d.d.); values
are per epoch interval

M.d.d. (mm)

Pnt. axisl axis2 axis3

101 1.55 0.80 0.76
103 149 0.73 0.73
102 1.52 0.76 0.74
104 148 0.72 0.72

Finally five points (101,...,105) are given a move-
ment of 1 mm in both the x and y direction and -0.7
mm in the z direction in each epoch interval. It is
modelled by 60 nonstochastic observations. Let vec-
tor c(ll()) 1105 D€ the subvector of vector ¢ that contains
the x, y, z coordinates of the five points in epoch i.
Letk = (1,1,1, 1, DT, I5 the (3x3)-unit matrix, and
E = Iz ® k, with ® denoting the kronecker prod-
uct. From the following nonstochastic observations
the matrix Zy is deduced.

0 = Aci) 105 = Ac(l%))l—los +EAa
0= Ac(lz())l—105 - Ac(130)1—105 +EAa (52)
0= Ac(130)1—105 — Aci)_jos + EAa
0= Ac(lzz))l—los — Acly_jos +Eda

with Aa as defined before.

The null hypothesis is rejected again. The test of
the hypothesis that the five points have shifted gives
a very large test statistic (74.2 with a critical value
of 12.6, if the significance level is 0.6 %), indicating
that it is a very good hypothesis. The estimated de-
formation and the minimal detectable deformations
are given in table 3. The length of the deformation
vector is 1.6 mm, which is exactly the length of the
vector that has been put intentionally into the coordi-
nates.

Point movements that are nonlinear in time are
modelled by nonstochastic observations that are non-
linear functions of the deformation parameters. To be
used in the model, the functions have to be linearised.

If the deformation pattern to be expected is not
known, a search has to be performed for the best
alternative hypothesis. A strategy is described by
Velsink (2015b) for two epochs. Extending it to more
than two epochs, one could for example systemati-
cally test for a constant linear movement through all
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Table 3: Linear movement of points 101-105 over five
epochs; values are per epoch interval

Est. def. (mm) M.d.d. (mm)

Pnt. X y z axisl axis2 axis3

101-105 1.0 0.7 -1.1 093 0.71 0.60

epochs of each point individually, of combinations of
two points close together, of combinations of three
points close together, etc. Because it is not needed
to solve a complete adjustment model, only to com-
pute test statistic (34), its degrees of freedom ¢ de-
termines the computational burden of testing many
hypotheses.

8 Conclusions

A model has been built for the adjustment of a time
series of 3D coordinates in a geodetic point field. The
covariance matrices of the coordinates of all epochs
of the time series are used and they may be full and
singular. Deformation patterns, or their absence, are
modelled as nonstochastic observations. To make the
testing of the model invariant for S-transformations,
transformations between all epochs are built into the
model. The transformations can be similarity or con-
gruence transformations, and are modelled as affine
transformations, subject to constraints. The con-
straints are implemented as nonstochastic observa-
tions. The model is first built as a nonlinear one, and
then linearised. The approximate parameter values
and their updates in the iteration steps (needed be-
cause of the linearisation) have to comply with all
nonstochastic observations. For the rotation parame-
ters this is accomplished with singular value decom-
position.

In many cases it is a sound deformation analy-
sis procedure to formulate a null hypothesis that as-
sumes no deformation. The nonstochastic observa-
tion equations state that the coordinate differences
between the epochs are expected to be zero after the
transformations. Alternative hypotheses are formu-
lated that describe movements of one or many points
over one or many epoch intervals. Standard hypoth-
esis testing is used to test the alternative hypothesis
against the null hypothesis. The quality of the tests
is described by the sizes of the minimal detectable
deformations.

The point movements are formulated as non-
stochastic observation equations, which give the ma-

trices to be used in the testing equations.

The model and its adjustment and testing have
been verified experimentally with a geodetic net-
work, where 15 points are measured by a total sta-
tion during five epochs. The results show that 3D
deformation analysis of time series of coordinates is
possible with the model proposed.
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