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ABSTRACT 

The establishment of terrestrial laser scanning in engineering geodesy provides new possibilities, but also 
presents new challenges. An appropriate utilization of the huge amount of information contained in laser 
scanning point clouds requires the development of areal analyzing approaches. Currently, especially the 
development of a point cloud-based deformation analysis receives much attention.  

In this contribution, a space- and time-continuous deformation model is introduced. The basis of this approach 
is formed by the initial object’s geometry of the first measuring epoch, which is represented by a trend surface 
in terms of a best-fitting B-spline surface. The deviations of the point clouds measured in the subsequent epochs 
with respect to the trend surface reflect the deformations. These deviations are interpreted to be caused by a 
locally stationary and locally homogeneous stochastic process and, thus, they are modelled by means of 
stationary and homogeneous correlograms as well as slowly varying variances. The combination of the 
deterministic trend surface with this stochastic signal leads to an adjustment problem similar to a least squares 
collocation.  

The focus of this contribution lies in the application of the deformation model to a deformed surface acting 
like a first-order system which follows the step response. Simulated data sets of five measuring epochs are used 
in order to analyze the approach’s performance by investigating the filtering’s residuals and by comparing the 
filtered data sets to nominal surfaces.   

 
 

I. INTRODUCTION 

The development of the laser scanner changed the 
analysis strategies of engineering geodetic problems 
from point-wise approaches to areal ones. Despite of 
the many advantages laser scanning provides, a variety 
of challenges occurs, especially when performing an 
areal deformation analysis  (Holst and Kuhlmann 2016; 
Mukupa et al. 2016; Wunderlich et al. 2016). Missing 
point correspondences between two measuring e-
pochs, the question concerning interpretable measures 
for areal deformations and the absence of appropriate 
error models for laser scanner measurements have to 
be mentioned in this context. 

Areal analysis approaches meeting these challenges 
can be classified either to perform a point-to-point-
based comparison (Little 2006), a point-to-surface-
based comparison (Erdélyi et al. 2017) or a surface-to-
surface-based comparison (Vezočnik et al. 2009) of the 
data sets describing the deformed object (Mukupa et al. 
2016).  

In this contribution an approach to an areal defor-
mation analysis is introduced, allowing a point-to-
surface based comparison with respect to a reference 
surface. Similar to a least squares collocation, the mea-
sured object is modelled to consist of three parts: A 
deterministic trend, describing the initial state of the 

object, a stochastic signal, representing the defor-
mations, as well as the measuring noise accounting for 
the uncertainties caused by the measuring process. Due 
to the stochastic interpretation of the deformation and 
the respective modelling by means of locally stationary 
and locally homogeneous distance-depending covario-
grams, no identical points in different measuring e-
pochs are required. Furthermore, a stable estimation of 
the stochastic relationships is possible, even if only few 
measuring epochs are available.  

The introduced model is applicable even to very 
specific deformation types, e.g. the step response of a 
first-order system, and it provides satisfying results 
even in this “borderline” situation.  

The paper is structured as follows: Section II provides 
the mathematical basics, which are needed for develo-
ping the presented approach. In section III the data sets, 
on which the approach is applied, are introduced. 
Furthermore, the relationship between a shifting of a B-
spline surface’s control point following a step response 
and the deformation of the respective surface is 
investigated. The space- and time-continuous analysis 
approach for deformation modelling is derived and 
applied to the simulated data sets in section IV. The 
results of the approach’s application are presented and 
discussed in section V. Finally, in section VI a conclusion 
is drawn and an outlook is given.  
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II. MATHEMATICAL BASICS 

A. Deformation processes 

The basic idea for the simulation of deformation 
processes is that an object behaves like a first-order 
system. Thus, its movement 𝑦(𝑡) caused by forces 𝑥(𝑡) 
acting on it can be described by means of a linear first-
order differential equation 

 
𝐻∞𝑥(𝑡) = 𝑦(𝑡) + 𝑇𝑦̇(𝑡)                           (1) 

 
with 𝐻∞, T: system specific constants (Pelzer 1976). 

The solution of this differential equation differs 
depending on the type of the acting forces. In this 
contribution, a closer look is taken at the sudden 
change of the acting forces (unit jump), as this synthetic 
signal is often used to identify the system’s specific 
constants 𝐻∞ and T.  

Assuming a sudden change in load of ∆𝑥 =  𝑥2 − 𝑥1 
at a certain time 𝑡0, the object reacts according to the 
step response and the resulting deformation can be 
described by (Pelzer 1976): 
 

∆𝑦(𝑡) = 𝐻∞ {1 − 𝑒(−
𝑡−𝑡0
𝑇
)} ∆𝑥(𝑡0).               (2) 

 
B. B-spline surfaces 

A B-spline surface of degree p and q is defined by:  

𝑺̂(𝑢, 𝑣) = ∑ ∑ 𝑁𝑖,𝑝(𝑢)
𝑚
𝑗=0 𝑁𝑗,𝑞(𝑣)𝑷𝑖𝑗

𝑛
𝑖=0  .       (3) 

A surface point 𝑺̂(𝑢, 𝑣) is located by its surface 
parameters 𝑢 and 𝑣 on the surface and is computed as 
the weighted average of the (𝑛 + 1) x (𝑚 + 1) control 
points 𝑷𝑖𝑗  (Piegl and Tiller 1995). The respective 

weights are the functional values of the B-spline basis 
functions of degree 𝑝 and 𝑞  𝑁𝑖,𝑝(𝑢) and 𝑁𝑗,𝑞(𝑣) which 

can be recursively computed by means of the Cox-de-
Boor algorithm (Cox 1972; Boor 1972). The B-spline’s 
domain is split into knot spans by two knot vectors 𝑈 =
 [𝑢0, … , 𝑢𝑟] and 𝑉 =  [𝑣0, … , 𝑣𝑠] which are defined in 
direction of the surface parameters.  

The division of the surface parameters’ domain by 
means of the knot vectors leads to the property of 
locality, meaning that the shifting of one control point 
changes the surface only locally.  

 

C. Spatio-temporal stochastic processes 

A spatio-temporal stochastic process 𝑍(𝑡, 𝒙) is 
defined to be stationary (homogeneous) if its statistical 
moments are constant over time 𝑡 (location 𝒙) and if its 
joint statistical moments depend only on the time lag 𝜏 
(spatial distance 𝑑) between two observations 
(Schlittgen and Streitberg 2013; Cressie 2015). Tempo-
ral dependencies of stationary stochastic processes are 
usually modelled by means of covariance functions 
(Schlittgen and Streitberg 2013), whereas variograms 

(equation (4)) are used to model spatial dependencies 
(Cressie 2015): 

 

𝛾(𝑑̅𝑘) =
1

2|𝑁𝑙|
∑ (𝑧(𝒙𝑖)− 𝑧(𝒙𝑗 ))

2
.(𝒙𝑖,𝒙𝑗)∈𝑁𝑙
         (4) 

 

In equation (4) 𝑧(𝒙𝑖) and 𝑧(𝒙𝑗) are realizations of a 

stochastic process at a certain location 𝒙𝑖  and 𝒙𝑗  

respectively. The variogram averages the squared 
differences over all |𝑁𝑙| point pairs whose distance 
𝑑𝑖𝑗 = ||𝒙𝑖 − 𝒙𝑗|| is contained in the interval 𝑁𝑙 (𝑙 =

1,… , 𝑛𝐼) and, thus, is a function of the mean separation 
distance 𝑑̅𝑙 of all point pairs belonging to interval 𝑁𝑙 
(Smith 2016). 

When the process’s variance 𝜎2 is known, a vario-
gram can be transformed into a covariogram: 

 

𝐶̂(𝑑̅𝑙)  =  𝜎
2 − 𝛾(𝑑̅𝑙).                             (5) 

 

Standardizing equation (5) with 𝜎2 =  𝐶̂(0) gives a 
correlogram: 

 

𝜌̂(𝑑̅𝑙) =  
𝐶̂(𝑑̅𝑙)

𝐶̂(0)
.                                      (6) 

 
A stochastic process is defined to be locally stationary 

(homogeneous) if this correlogram can be split into the 
product of a stationary (homogeneous) correlogram 
and a slowly varying scale factor (Silverman 1957).  

  

III. DATA SETS 

The data basis for the computations performed below 
are simulated data sets as they allow a comparison with 
nominal surfaces. Furthermore, the use of simulated 
data excludes an influence of a missing or an incorrect 
error model of the terrestrial laser scanner and the 
resulting pseudo-deformations.  

 
Figure 1. Deformed B-spline surface and its control points 

(black crosses). Solid surface: Non-distorted surface; opaque 
surface: Deformed surface for 𝑡5 = 120 𝑠 resulting from an 
upwards shifting of the yellow encircled control point to the 

red marked position following a step response. 
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Figure 2. Temporal behaviour of a selection of surface 

points (crosses) which follow step responses (solid lines). 

 
The non-distorted measuring object is represented by 

a B-spline surface with 𝑛 + 1 = 9 and 𝑚 + 1 =
7 control points and with dimensions of approximately 
40 cm x 40 cm x 18 cm (solid surface in figure 1). This 
surface is deformed by moving the control point 𝑷4,5 

(encircled in yellow in figure 1) according to equa-
tion (2) with 𝐻∞ = 1 and 𝑇 = 30 𝑠 upwards, resulting 
in the control point encircled in red.  

As can be seen in figure 1 the shifting of one control 
point changes the surface only locally and leads to an 
uplift of the inner part of the surface. The surface is 
assumed to be acquired by means of a laser scanner 
during the deformation process at five equidistant 
points of time 𝑡1 = 0 𝑠, 𝑡2 = 30 𝑠, … 𝑡5 = 120 𝑠.  

However, as not the control point, but the surface 
itself has to be considered as the dynamic system 
following equation (2), firstly, it has to be verified that a 
step response of a control point leads to a step 
response of the B-spline surface itself.   

For this reason, the five surfaces are sampled with a 
spatial resolution of approximately 6 mm. As the sur-
face parameters 𝑢, 𝑣 define point correspondences, the 
surface points’ behavior over time can be analyzed.  

In figure 2 the temporal behavior of eight exemplarily 
chosen surface points can be seen. As indicated by this 
point selection, the temporal behavior of all surface 
points can be expressed by means of equation (2) with 
a location dependent parameter ∆𝑥 and with 𝐻∞ = 1 
and 𝑇 = 30 𝑠 being equal in case of all eight curves. 
Thus, the surface itself can be regarded to be a dynamic 
system following the step response.  

In a last step, measuring noise with a standard de-
viation of  𝜎𝜺 = 1 𝑚𝑚 is added to the sampled surfaces, 
resulting in the data sets summarized in table 1. 

 
Table 1. Simulated data sets  

Abbr. t [s] Max. Deformation 

PC(1) 0 0.0 cm 
PC(2) 30 1.4 cm 
PC(3) 60 1.9 cm 
PC(4) 90 2.1 cm 

PC(5) 120 2.2 cm 

 

In accordance with equation (2), the maximum defor-
mation increases rapidly from the first to the second 
measuring epoch, whereas it converges towards a 
constant value during the last three epochs. 

 

IV. A SPATIO-TEMPORAL DEFORMATION MODEL 

A. Derivation of the spatio-temporal deformation 
model 

The deformation model is developed under the 
assumption that possible rigid body movements of the 
measuring object are detected and eliminated in 
advance, for example by using the B-spline-based 
approach introduced in (Harmening and Neuner 
2016b). Thus, the measuring object considered in this 
contribution is solely affected by distortions. These 
distortions are assumed to be continuous so that the 
occurrence of discontinuities like edges and fractures is 
excluded.   

The basic ideas of the developed deformation model 
are similar to those of a least squares collocation (LSC) 
(Moritz 1989). Thus, the observations 𝒍 are modelled as 
the sum of the deterministic trend 𝑨𝒙, which roughly 
approximates the observations, the stochastic signal 𝒔, 
which carries information regarding the phenomenon 
in terms of stochastic relationships, as well as the 
measuring noise 𝜺, which models the uncertainty due 
to the measuring process: 

 

 𝐸[𝒍̂] = 𝒍 −  𝜺 =  𝑨𝒙 + 𝒔̂ .                              (7) 

 

Both, signal and noise are assumed to be normally 
distributed with expectation 𝟎 and covariance matrices 
𝚺𝒔𝒔 = 𝜎0

2 𝑸𝒔𝒔 and 𝚺𝜺𝜺 = 𝜎0
2 𝑸𝜺𝜺 respectively. Further-

more, correlations between signal and noise are 
excluded (Heunecke et al. 2013).  

In this approach, the trend is used to model the 
measuring object’s initial and undistorted geometry, 
which is acquired during the first measuring epoch. 
Thus, the trend is the same throughout all epochs. The 
deformation is interpreted to be a spatio-temporal sto-
chastic process and is solely modelled by means of the 
stochastic signal. Therefore, the trend is estimated once 
and is afterwards subtracted from the original obser-
vations. Combining this idea with the extension of 
equation (7) by 𝜅 epochs gives the functional model of 
the spatio-temporal deformation model: 

 

[

𝒍(1)

𝒍(2)

⋮
𝒍(𝜅)

]

⏟  
𝒍̅

− [

𝑨(1)

𝑨(2)

⋮
𝑨(𝜅)

]

⏟  
𝑨̅

 𝒙(1) = [

𝒔(1)

𝒔(2)

⋮
𝒔(𝜅)

]

⏟  
𝒔̅

+ [

𝜺(1)

𝜺(2)

⋮
𝜺(𝜅)

]

⏟  
𝜺̅

  .              (8) 

 

Due to the one-time estimation of the trend, the 
actual observations for the deformation analysis are the 
measurements’ residuals with respect to the trend: 

 

𝒆̅ = 𝒍̅ − 𝑨̅𝒙(1) .                              (9) 
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By including a predicted signal 𝒔̅′, the compact form 
of the functional model results in 

  

𝒆̅ = [𝑰 𝟎 𝑰]⏟      
𝑩̅𝑇

[
𝒔̅
𝒔̅′
𝜺̅
]

⏟
𝒗̅

 .                              (10) 

 

Equation (10) is a conditional model which is solved 
by  

 

[
𝒔̂̅
𝒔̂̅′
𝜺̂̅

] = [

𝚺𝒔̅𝒔̅
𝚺𝒔̅′𝒔̅
𝚺𝜺̅𝜺̅

] 𝒌̂̅                              (11) 

 

with 
 

𝒌̂̅ = (𝚺𝜺̅𝜺̅ + 𝚺𝒔̅𝒔̅)
−𝟏𝒆̅ .                              (12)  

 
As indicated by the formulas above, a modelling of 

the deformation following the proposed approach 
requires three steps (estimation of the trend, 
estimation of the signal and modelling of the noise) 
which will be discussed in detail in the following.  

 

B. Estimation of the trend 

The trend estimation is based on B-spline surfaces as 
they approximate even complex surfaces in a satisfying 
manner (Harmening and Neuner 2015).  

When determining a best-fitting B-spline surface, 
usually only the location of the control points is 
estimated, resulting in a linear Gauß-Markov model. 
Methods for determining the remaining parameter 
groups can be found in (Bureick et al. 2016) (knot 
vectors), in (Harmening and Neuner 2015) (surface 
parameters) or in (Harmening and Neuner 2016a, 2017) 
(number of control points). In this study, nominal values 
known due to the simulation process are used for these 
remaining parameter groups.  

Based on the ideas presented in the previous section, 
the point cloud of the first measuring epoch is used to 

estimate the B-spline surface’s control points 𝑷(1) =

 𝒙(1):  
 

𝑷̂(1) = (𝑨(1)
𝑇
𝑨(1))−𝟏𝑨(1)

𝑇
𝒍(1).                      (13) 

 
The stochastic relationships between the observa-

tions caused by the measuring process are expressed by 
the identity matrix. Investigations regarding an im-
proved modelling of the stochastic relationships bet-
ween the observations can be found in (Kauker et al. 
2017).  

In equation (13) the observation vector 𝒍(1) contains 
the observed coordinates in 𝑥(𝑢, 𝑣)-, y(𝑢, 𝑣)- and 

𝑧(𝑢, 𝑣)-direction and the design matrix 𝑨(1) is filled by 

means of the B-spline basis functions 𝑁𝑖,𝑝(𝑢)
(𝑖𝜅), 

𝑁𝑗,𝑞(𝑣)
(𝑖𝜅) in dependence of the surface parameters 

𝑢, 𝑣, locating the observations on the surface to be 

estimated. Based on these control points, the trend can 
be estimated for each measuring epoch: 

 

𝒍̂(𝑖𝜅) = 𝑨(𝑖𝜅)𝑷̂(1)    with 𝑖𝜅 = 1,… , 𝜅.                 (14) 

 

The residuals of the trend estimation 
 

𝒆(𝑖𝜅) = 𝒍(𝑖𝜅) − 𝒍̂(𝑖𝜅)                                 (15) 

 
provide the basis for the modelling of the signal and can 
be exemplarily seen in figure 3 for the z-coordinate of 
data set PC(5). 
 

 
Figure 3. Residuals of the trend estimation in direction of 

the z-coordinate (data set PC(5)) 

 

C. Estimation of the signal 

The first step of the signal modelling is the detection 
of the distorted regions as the non-distorted region of 
the measuring object is already completely described 
by means of the trend surface. In this study, a simple 
threshold consideration is used for this purpose: Each 
coordinate whose residual fulfils  

 

|𝑒𝑗
(𝑖𝜅)| > 1.5 𝜎(1), 𝑗 = 1, … , 𝑛𝒍

(𝑖𝜅)           (16) 

 

is allocated to the distorted region, with 𝜎(1) being 
the estimated measuring noise of the first measuring 

epoch and 𝑛𝒍
(𝑖𝜅) being the number of point obser-

vations in epoch (𝑖𝜅). As this simple threshold conside-
ration results in a high probability of a type I error 
(points are erroneously marked to belong to the 
distorted region), a postprocessing step is performed 
which detects single points in non-distorted regions and 
relabels them. 

Following the idea of the congruency model, the 
deformation process is interpreted to be mean-statio-
nary and mean-homogeneous with the expectation of 
the signal being 𝐸(𝒔) = 0. Thus, the deformations are 
characterized by the process’s variances and covarian-
ces. The former may strongly change over the distorted 
area as well as over the measuring period.  
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Figure 4. K-means-clustering of the residuals in direction of 

the z-coordinate (data set PC(5)). Black: non-distorted region.  

 
Consequently, the assumptions of strong stationarity 

and strong homogeneity are too restrictive. Thus, the 
principle of local stationarity is adopted in this context. 
The local variance as a slowly varying function of both, 
location and time, accounts for the changing magnitude 

of the residuals 𝒆(𝑖𝜅), whereas the stationary and homo-
geneous correlation structure allows an estimation of 
the required quantities based solely on one realization 
of the stochastic process.   

In order to account for the spatial variability of the 

variance, a clustering of 𝒆(𝑖𝜅) is performed by means of 
a k-means clustering (Lloyd 1982) (cf. figure 4).  

Assuming a common variance representative for each 
cluster, the respective standard deviations and, conse-
quently, the variances are estimated by: 

 

𝜎𝑗
(𝑖𝜅) = 

1

3
max (|𝒆𝑗

(𝑖𝜅)|)                             (17) 

 

with:  𝒆𝑗
(𝑖𝜅) ∈ 𝑐𝑗, 

 𝑗 = 1,… , 𝑛𝑐 indicating the cluster 
 𝑖𝜅 = 2,… , 𝜅 indicating the epoch. 
 

Afterwards, these values are used to normalize the 
residuals according to  

 

𝒆̃𝑗
(𝑖𝜅) =  

𝒆𝑗
(𝑖𝜅)

𝜎
𝑗
(𝑖𝜅)

 .                                            (18) 

 

These normalized residuals provide the basis for the 
computation of empirical correlograms according to 
equations (4) - (6). Both, the modelling of the correla-
tions within one measuring epoch and the modelling of 
the correlations between two measuring epochs is 
based solely on the spatial distance between the 
respective observations. The distinction between the 
spatial and the temporal correlations is solely realized 
by the estimation of different correlograms. 

 

 
Figure 5. Empirical (crosses) and analytical correlograms 

(solid lines) within data set PC(5). 

 
On the one hand, this procedure results in stable 

estimates even if only few measuring epochs are avail-
able. On the other hand, this procedure does not re-
quire identical points in different measuring epochs.  

When having estimated the empirical correlations 
(crosses in figure 5), they are approximated by means 
of analytical positive definite functions, resulting in 
analytical correlograms (solid lines in figure 5). It has to 
be noted that the empirical correlograms reflect the 
superimposition of two stochastic processes: the white 
noise-process representing the measuring noise as well 
as the signal (correlated process) representing the 
deformation. The estimation of analytical correlograms 
directly separates them: The ratio between empirical 
correlation 𝜌̂(0) and analytical correlation 𝜌(0) can be 
used to split the overall variance of each cluster into the 
variance of the noise and the variance of the signal 
(Smith 2016):  

 

 
𝜌̂(0)

𝜌(0)
= 

𝜎𝒔
2+𝜎𝝐

2

𝜎𝒔
2  .                            (19) 

 
The analytical functions provide the basis for setting 

up the correlation matrix 𝑹𝒔̅𝒔̅, consisting of 𝜅 𝑥 𝜅 
submatrices: 

 

𝑹𝒔̅𝒔̅ = [
𝑹𝒔𝒔
(1)(1)

⋯ 𝑹𝒔𝒔
(1)(𝜅)

⋮ ⋱ ⋮

𝑹𝒔𝒔
(𝜅)(1)

⋯ 𝑹𝒔𝒔
(𝜅)(𝜅)

].                      (20) 

 
In equation (20) the submatrices on the main diagonal 
model the correlations within one measuring epoch, 
whereas the matrices on the minor diagonals reflect the 
correlations between two epochs.  

Each of the submatrices is built up coordinate-wise 
and contains the analytical correlations as a function of 
the distance between the respective points.  

In a last step, this correlation matrix is converted into 
the variance-covariance matrix of the signal 𝚺𝒔̅𝒔̅ by 
taking into account the locally stationary and locally 
homogeneous variances computed by equation (17). 

 

D. Modelling of the noise 

In this study, the noise is simulated to be non-corre-
lating so that the variance-covariance matrix of the 
noise 𝚺𝜺̅𝜺̅ is a diagonal matrix. Although the assumption 
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of non-correlating noise does not hold for measured 
data sets, this simplifying assumption has to be seen as 
a first step towards an areal deformation analysis. 
Consequently, no separation of the two types of 
correlations (due to the measuring process and due to 
the deformation process) is necessary in this study. As 
the two variance were already separated during the 
determination of the analytical correlograms, 𝚺𝜺̅𝜺̅ can 
be directly set up.  

 

V. FILTERING RESULTS 

Having determined the trend surface as well as 𝚺𝒔̅𝒔̅ 
and 𝚺𝜺̅𝜺̅, the formulas derived in section IV can be used 
to filter the simulated point clouds.  

In a first step, the filtering’s residuals are analysed. 
The residuals’ spatial distribution in direction of the z-
coordinate can be seen in figure 6 for point cloud PC(5). 
As can be seen, the residuals’ magnitude varies almost 
randomly over the surface with the residuals of the 
distorted area being slightly smaller than those of the 
non-distorted area. The transition zone between those 
two areas is recognizable due to the accumulation of 
relatively large residuals (light yellow), indicating that 
an improved method for distinguishing between distor-
ted and non-distorted regions may improve the results. 
Nevertheless, with few exceptions, the residuals’ 
magnitude lies within the range defined by the three-
fold standard deviation of the measuring noise.  

Table 2 presents the filtering’s residuals of all measu-
ring epochs by means of statistical parameters descri-
bing the residuals’ distribution. As can be seen, the 
residuals’ distribution of the first epoch closely follows 
the normal distribution, which was used to generate the 
measuring noise. Thus, the pure trend estimation 
separates the measuring noise in a satisfying way.  

For the remaining measuring epochs, the distri-
butions of the residuals in direction of the z-coordinate 
differ slightly more from the normal distribution of the 
simulated measuring noise: The standard deviations are 
smaller, whereas the kurtosis lies within the range of 
[3.4,…,3.7], indicating slightly leptocurtic distributions.  

 
Figure 6. Residuals of the filtering in direction of the z-

coordinate (data set PC(5)) 

Table 2. Statistical parameters of the filtering’s residuals  

 PC(1) PC(2) PC(3) PC(4) PC(5) 

mean(𝜺̂𝒙) [mm] 3e-13 -0.02 -3e-3 0.01 3e-4 
mean(𝜺̂𝒚) [mm] 4e-13 0.02 6e-3 5e-3 0.02 

mean(𝜺̂𝒛) [mm] 8e-14 0.10 0.09 0.09 0.10 

std(𝜺̂𝒙) [mm] 0.98 0.58 0.48 0.45 0.45 

std(𝜺̂𝒚) [mm] 0.98 0.49 0.67 0.49 1.15 

std(𝜺̂𝒛) [mm] 0.98 0.82 0.87 0.85 0.80 

skewness(𝜺̂𝒙) [] 0.08 0.06 -0.04 -0.25 -0.10 

skewness(𝜺̂𝒚) [] 0.02 -0.09 -0.90 -0.20 0.40 

skewness(𝜺̂𝒛) [] 0.01 0.04 0.06 0.11 0.17 

kurtosis(𝜺̂𝒙) [] 3.1 9.1 8.2 6.1 6.4 

kurtosis(𝜺̂𝒚) [] 3.0 6.9 27.9 8.2 37.8 

kurtosis(𝜺̂𝒛) [] 2.9 3.5 3.6 3.4 3.7 

 
Due to the superimposition of trend, signal and noise 

in these measuring epochs, a filtering of the noise 
proves to be more challenging than in the first measu-
ring epoch, where only the trend has to be subtracted.  
Nevertheless, as the deviations are minimally and as 
there does not exist a relationship between the defor-
mation’s magnitude and the filtering’s quality, the 
results are promising.  

In contrast, the statistical parameters in direction of 
x- and y-coordinate reveal a severe deviation to the 
measuring noise’s distribution. On the one hand, this 
behavior is caused by the definition of the coordinate 
system (cf. figure 1). As the direction of the deformation 
corresponds to the direction of the z-coordinate, 
whereas the measuring object’s two principal compo-
nents lie within the x/y-plane, the data sets are very in-
sensitive for determining deformations in these di-
rections. On the other hand, this behavior is caused by 
the coordinate-wise treatment of the observations 
during the analysis process.  

Due to the use of simulated data sets, a comparison 
of the filtered data with respect to nominal surfaces is 
possible. In figure 7 the spatial distribution of the 
filtered residuals with respect to the nominal surface 
can be seen.   

 

 
Figure 7. Discrepancies to the nominal surface in direction 

of the z-coordinate (data set PC(5)) 
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Table 3. Properties of the discrepancies between the 

filtered point cloud and the nominal surfaces  

 PC(1) PC(2) PC(3) PC(4) PC(5) 

mean(𝑑𝑥)[mm] -0.01 -0.01 -0.03 0.01 -0.01 
mean(𝑑𝑦)[mm] -0.03 0.02 0.02 0.01 0.03 

mean(𝑑𝑧)[mm] 0.02 0.11 0.08 0.08 0.08 

max(𝑑𝑥)[mm] 1.07 4.37 2.97 3.47 4.32 

max(𝑑𝑦)[mm] 0.49 3.24 4.68 3.41 4.77 

max(𝑑𝑧)[mm] 1.08 4.33 4.24 3.50 4.11 

min(𝑑𝑥)[mm] -0.76 -4.01 -3.26 -4.72 -4.42 

min(𝑑𝑦)[mm] -2.02 -4.15 -3.96 -3.29 -5.65 

min(𝑑𝑧)[mm] -0.87 -3.17 -3.45 -2.72 -4.39 

skewness(𝑑𝑥)[] 0.27 0.01 -0.10 -0.07 -0.08 

skewness(𝑑𝑦)[] 

[] 

-0.90 -0.05 0.19 0.01 -0.08 

skewness(𝑑𝑧)[] -0.42 0.49 0.05 0.25 0.22 

kurtosis(𝑑𝑥) [] 6.9 3.8 3.2 3.4 3.6 

kurtosis(𝑑𝑦) [] 11.4 3.5 3.6 3.3 4.5 

kurtosis(𝑑𝑧) [] 5.6 6.0 5.4 4.7 7.2 

 
The discrepancies’ magnitudes allow a distinction 

between the distorted area and the non-distorted one, 
as the pure trend estimation increases the obser-
vations’ precision due to the measuring process and 
leads to discrepancies of ±1 𝑚𝑚 in the non-distorted 
region. The discrepancies’ magnitude is larger in the 
distorted region but lies – with few exceptions – within 
the threefold standard deviation of the measuring 
noise. These exceptions either lie within the transition 
zone between distorted and non-distorted area or in 
that area where the largest deformation occurs. 
Despite of these systematics, the discrepancies’ magni-
tudes vary randomly within both areas, indicating a 
compensation of the systematics caused by the defor-
mation process as well as maintaining of the measuring 
process’ precision in the distorted area due to the 
stochastic model. 

Table 3 summarizes the properties of the discrepan-
cies between the filtered point cloud and the nominal 
surfaces for all five measuring epochs.  

The averaged discrepancies being close to zero for all 
measuring epochs as well as the small values of the 
skewness indicate an unbiased filtering with respect to 
the nominal surface. Minimal and maximal values of the 
discrepancies are slightly smaller for the z-coordinate 
than for x- and y-coordinate, supporting the conclusions 
provided by table 2 regarding the insensitivity with 
respect to deformations in these two coordinate 
directions. Although the minimal and maximal discre-
pancies are larger than the threefold standard deviation 
of the noise, the large values for the kurtosis in direction 
of the z-coordinate reveal an accumulation of the 
discrepancies around zero and support the model’s 
approximation quality.  

 

VI. CONCLUSIONS  

A. Summary 

In this contribution, an approach for an areal defor-
mation analysis was introduced and applied to simu-
lated data sets.  

The deformation model is based on a B-spline surface 
representing the undistorted object acquired in the first 
measuring epoch as well as on a locally stationary and 
locally homogeneous signal describing the deformation 
process. The description of the deformation process 
requires the distinction between distorted and non-
distorted areas of the measuring object, the deter-
mination of local variances as well as the estimation of 
a homogeneous and stationary correlation structure.  

The application to simulated data sets representing a 
surface deforming according to the step response of a 
first-order system reveals promising results: Even in 
case of relatively large deformations compared to the 
measuring object’s size, the deformation can be 
described with an accuracy in the order of the 
measuring noise.  

 
B. Outlook 

Although the majority of systematics caused by the 
deformation are eliminated by means of the stochastic 
modelling, the results reveal that a simple threshold 
consideration in order to distinguish between distorted 
and non-distorted areas of the object has weaknesses. 
Thus, further investigations with regard to the 
classification of the distorted regions are necessary.  

The application of the deformation model was 
restricted to simulated data sets following the step 
response in this contribution. In future, the range of 
investigated deformation processes will be extended by 
applying the model to other types of typical defor-
mation processes (linear deformations, periodic defor-
mations etc.).  

Another restriction was made by assuming non-corre-
lated measuring noise. The use of a more realistic noise 
behavior when simulating the data and the respective 
investigations regarding the separability of correlated 
noise and correlated signal is the first step towards the 
application to measured data sets instead of simulated 
ones.  

As already indicated in the development of the 
approach, a prediction of the signal is possible. As this 
allows a prediction of the deformation within one 
measuring epoch as well as into non-measured epochs, 
a space- and time-continuous description of the de-
formed measuring object is possible.  
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