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ABSTRACT 

The contribution presents an implementation of Kalman filtering for estimation of unknown parameters of a 
well-known hydrostatic-seasonal-time model which is used in dam safety procedures. The unknown 
parameters present a system state of the KF, which is iteratively improved by new information entering with 
new observations – in our case measured relative displacements. The analyses showed that the KF can detect 
statistically significant changes in dam behaviour by testing measurement innovations after a successful 
initialization phase and stabilisation of the parameters. Since the KF is implemented on the HST-model the 
algorithm enables detrending of reversible and irreversible deformations, and analysis of a long-term trend for 
each measurement epoch. The whole process is strongly influenced by the process noise intensity scalar which 
defines weighting between the process and the measurement noise. Defining an appropriate value of the 
process noise intensity scalar is the main challenge of the algorithm, where the convergence of a posteriori 
error covariance matrix is used as the main criterion in the tuning process for the case study. In the case study, 
time series of measured displacements and water level in impounding reservoir of an embankment dam for a 
period of 21 years are used to test the proposed algorithm. Measurements were captured with a fully 
automatized monitoring system based on tachymetric observations. 

 
I. INTRODUCTION 

The safety control of engineering structures can be 
outlined by three phases: monitoring of the structure 
behaviour and influential parameters by different 
sensors, modelling and analysing registered 
observations, and engineering interpretation of the 
results. Nowadays, the technical development of 
measurement systems and communication 
technologies (wireless communication techniques) 
enable full automatization of high-rate measurement 
executions, data transfer and storage. On the other 
hand, the alarming process, which is one of the 
important steps in the structural safety procedures, is 
in many cases still not (fully) automated from the 
computational aspects and possibilities, and is 
primarily based on engineering experience and 
decisions.  

The development of sensors, communication 
techniques and high-performance computers has 
promoted, encouraged or even required the 
development and testing of enhanced modelling 
algorithms and evaluation concepts in order to extract 
all of the information from the data available. The 
implementation of mathematical techniques prioritizes 
the models which enable the assimilation of all of the 
information available, an estimation of essential 
parameters of dynamic modelling in real time, the 
processing of measurements with data gaps and 
methods to handle the complexity of adopted 

functional models. As such these models can provide 
an additional supportive tool in decision-making and 
can distribute more reliable results for alarming 
procedures. 

Geodetic methods and measurement systems have 
been proven to be reliable and precise techniques for 
capturing dynamic processes on the object itself, in its 
surrounding or interrelated deformations of both, and 
are nowadays part of complex monitoring systems. 
Geodetic measurement systems can be fully 
automatized and can capture spatial-temporal 
processes, i.e. behaviour of the object, deformation 
patterns, distribution of influential forces and 
parameters, very precisely and instantaneously. 

Long- and midterm time series of measured 
displacements and other parameters enable testing of 
algorithms which could potentially be integrated in an 
automatization of the alarming process.  

 
In this work, the capability of the Kalman filter for an 

adaptive parametric estimation of unknown 
parameters of a proposed statistical model in dam 
safety procedures, which could be implemented as a 
near real-time algorithm, will be presented. The 
efficiency of the filtering for detrending reversible 
deformations from irreversible, estimating long-term 
trend, and detecting anomalies in a near real-time will 
be discussed. 
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After the introduction, the mathematical 
formulation of the statistical hydrostatic-seasonal-time 
(HST) model and the principle of a well-known Kalman 
filtering will be given in Section II. In Section III, a case 
study is presented with the formulation of the Kalman 
filter for the HST-model and description of 
measurements which are used for model testing. The 
results are presented in the fourth part. Conclusions 
are summarised in Section V. 

 

II. MATHEMATICAL BACKGROUND 

A. Hydrostatic-Seasonal-Time Model 

For modelling the behaviour of dams and their 
control different analysis methods, based on 
deterministic and statistical models, (Swiss Committee 
on Dams, 2003; Salazar et al., 2015), can be used. 
Models based on mechanical principles - deterministic 
models - try to describe the influence of changes in the 
input variables on the response variables with a 
mathematical model of physical (mechanical, thermal 
and chemical) behaviour and are often difficult to 
construct. On the other hand, the statistical models 
are based on the experience from previous 
measurements, where the influences of measurable 
variables are described by basic mathematical 
functions, which are rather easier to handle as 
functions in deterministic models. Statistical models, 
also called empirical models, gain in importance in 
various scientific fields due to simple and high-rate 
generation of observation by different sensors, and 
high computational capacities, (Horvath et al., 2016).  

Widely used statistical model for the data analysis 
and safety control developed primarily for concrete 
dams and later implemented also for embankment 
dams is a hydrostatic-seasonal-time (HST) model, (a 
review manuscript Salazar et al., 2015), which models 
three main influences on the dam - hydrostatic 
pressure and temperature influence as elastic effects 
and irreversible time effect - with basic mathematical 
functions. The influence of water level in an 
impounding reservoir - hydrostatic pressure is 
modelled by a polynomial up to 4th degree 
(parameters a� − a�), the thermal influence is 
modelled indirectly with trigonometric functions with 
annual and semi-annual period (parameters b� − b�), 
and for the modelling of long term irreversible 
deformations different, strictly monotone functions 
are proposed, (Swiss Committee on Dams, 2003). In 
Eq.(1) the sum of a linear term, a positive exponential 
and a negative exponential of reduced time during the 
analysed period (parameters c� − c�) is used. The 
model prediction y	
 corresponding to the measured 
relative displacement y
 for a time point t
, t
: i =
1,2, … , N , can be written as follows: 

 

y	
 = a� + a� · h
 + a� · h

� + a� · h


�+a� · h

� +                               

+b� · sin(w� · t
) + b� · cos(w� · t
) +																		
+b� · sin(2 ∙ w� · t
) + b�

· cos(2 ∙ w� · t
) + 

+c� · τ
 + c� ∙ e$% + c� ∙ e&$%   , 
(1) 

where:  
a� … initial constant 

h
 = '((%)&')%*

')+,&')%*
 … relative water level  

h(t
) … measured water level for a time point t
,	-./ 
h0�1, h0
2 … maximal and minimal water level, -./, 
for the time period of modelling 

w� = �∙3

∆56
 … angular frequency 

∆78 … time step dependent on data; for the case study 
see sec.III-B   

τ
 = (%&(9

(:&(9
 … reduced time for the analysed period 

-t�, t;/. 
 

The unknown parameters can be estimated by a 
multiple linear regression - MLR, (Montgomery et al., 
2012), for a defined period and enable separating 
irreversible deformations, which are usually a 
consequence of an ageing of the dam, from the 
reversible influences.  

 
In this work, a solution of the parameter estimation 

for each time step when new measurements enter in 
the process is given and discussed. As a well-known 
algorithm for real-time estimation the Kalman filtering 
(KF) is deployed.  

 
B. Kalman filtering 

In the modelling of kinematic processes, we deal 
with time series of observations and standard 
techniques of the noise reduction of time series, 
including filtering and smoothing. KF is a data 
processing algorithm that estimates the system state 
from noisy measurements using a least-squares 
method in the sequential mode. It gives the optimal 
system state estimate together with a measure of how 
certain it is that the system state estimate is the true 
state also for the cases where no redundant 
observations are available. It performs an optimal 
solution for a linear process with uncorrelated, white, 
zero-mean Gaussian process and measurement 
disturbances. The algorithm is described in several 
books (Bar-Shalom et al., 2001; Grewal et al., 2001; 
Gibbs, 2011), and implemented in many non-
engineering and, especially, engineering tasks. 

The dynamic process can be modelled with two main 
equations - dynamic plant equation, Eq.(2), and 
measurement equation, Eq.(3): 

 
               <=

& = >
&� · <=&�
? + @
&� · A
&� + B
&�            (2) 

         
                           C=

& = D
 · <=
& + E=   .                            (3) 
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Here, <
 ∈ ℜ21� and  C
 ∈ ℜ01� are a system state 
vector and a vector of measurements, with n system 
state components and m measurements in each time 
step. Vectors B
&� ∈ ℜ21� and E
 ∈ ℜ01� are process 
and measurement noise, with zero-mean normal 
distribution, B
&�~J(0, L
&�) and E
~J(0, M
), 
respectively. Matrices L
&� ∈ ℜ212 and M
 ∈ ℜ010 
are process and measurement variance-covariance 
matrices, respectively. Evolving of the system state <
 
in time is described by the state transition matrix, 
>
&� ∈ ℜ212, and the estimation of the predicted 
measurement value C


& based on the a priori estimated 
system state <


& is defined by the matrix D
 ∈ ℜ012, 
which describes the relations between the system 
state vector and the vector of measurements. Term 
@
&� · A
&� relates to the optional control input. 

To start the prediction stage of the filter an initial 
estimate of the system state, <


&, and the 
corresponding a priori error covariance matrix, N


&,  
have to be known. By entering of new measurements, 
the updating step is performed and an improved a 
posteriori system state, <


?, and the corresponding a 
posteriori error covariance matrix, N


?, are estimated: 
 

                   O
 = N

& · D


P · QD
 · N

& · D


P + M
R
&�

        (4) 

 
                             <


? = <

& + O
 · (C
 − C


&)                    (5) 
 
                              N


? = (S − O
 · D
) · N

&                      (6) 

 
The matrix O
 is a Kalman gain matrix and weights 

the measurement residual – innovation, T
 = C
 − C

&. 

The algorithm tries to minimise the conditional mean-
squared estimation error with respect to the Kalman 
gain O
. If the measurement error covariance 
approaches zero, the gain O
 weights the residual and 
information which enters with precise observations 
more heavily than a priori system state estimate. On 
the other hand, as the a priori estimate error 
covariance approaches zero the KF can rely more on 
the a priori system state estimate and consequently 
also on the predicted measurement than the actual 
measurement (Welch et al., 2001).  

 

III. CASE STUDY 

A. Description of Measurements 

The implementation of the Kalman filtering for a 
parametric estimation in the HST-model is tested on 
long term coordinate time series of a geodetic point in 
a permanent geodetic network, which is designed for 
deformation monitoring of a rock-fill embankment 
dam and its surrounding. The point is located in the 
middle of the upstream side on a dam crest. The 
observations are captured with a high precision total 
station, which is permanently installed at the point. 
The monitoring system is fully automatized and 
deploys displacements every two hours. The 

permanent geodetic monitoring system represents the 
main monitoring system of the dam. 

The relative coordinates in all three directions of a 
predefined coordinate system, Fig.(1), are estimated 
with the geodetic adjustment of observations. 
Seasonal variations, a strong correlation with the 
water level in impounding reservoir and an underlying 
long-term trend of irreversible deformations can be 
detected in coordinate time series of the analysed 
point (Gamse et al., 2017a; Gamse, 2017b), where the 
reversible and irreversible deformations are of the 
utmost significance in the radial direction.  
 

 
Figure 1. Orientation of the axes of the local coordinate 
system in the analysed point on the dam crest (Gamse, 

2017b) 
 

In the case study monthly median values of radial 
relative displacements (perpendicular to the dam 
body, with a negative direction towards the upstream 
side; x-direction on Fig.(1)) and measured water level, 
reduced for a constant, for the period of 21 years were 
available by the dam/data owner and were used for 
the algorithm testing. Both time series are graphically 
presented in Fig.(2).  

In the evaluation of the proposed model the main 
intention will be given on the periods with two 
scenarios:  

- for the period where the annual reduced water 
level in the impounding reservoir is above the 
reduced minimal water level H0
2 = 475., and 

- for the period with a drawdown of the water 
table, where the annual water level is below the 
reduced minimal water level H0
2. 

Namely, if the water level reaches or falls below the 
minimal water level H0
2 within the operating year or 
even for several adjacent years, this can cause changes 
in the trend of irreversible deformations, since there is 
a less back-pressure on the dam induced by the water 
masses. With the model we try to detect these 
unknown changes, which could be significant 
according to the previous behaviour.   
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Figure 2. Relative radial displacements, -./, reduced water 
level, -./, and reduced minimal water level H0
2 = 475. 

 

B. Formulation of the Kalman filter for the HST-model 

The unknown parameters of the HST-model are 
usually estimated for a given period of measurements 
where different techniques, for example MLR, can be 
used. The optimal model can subsequently be used for 
the prediction of the dam behaviour under similar 
loads, to separate reversible and irreversible 
deformations, and to estimate different loads on the 
dam.  

In the proposed attempt we try to combine the 
previous knowledge of the dam behaviour and a priori 
information about measurements, and the information 
which enters in the process at each measurement 
step. For the basic KF model, with no windowing 
applied, the estimation follows in one step back – one 
step forward manner. In our case, we are interested in 
the estimation of the unknown model parameters, 
their changes and capability of the stochastic model of 
the KF to detect statistically significant changes in the 
dam behaviour described by measuring relative 
displacements as a consequence of changeable 
influential forces on the dam. 

In order to reduce the complexity of the model as 
much as possible, we keep only sine and cosine terms 
with an annual period. Furthermore, for the time 
component only a constant term and a linear trend, 
a� + c� · t
 , are used in order to simplify the analysis 
of changes in the long-term trend. The detailed 
discussion on the importance of parameters of the 
hydrostatic and seasonal component is presented in 
(Gamse et al., 2017a). The simplified HST-model has 
the following form:  
 

y	
 = a� + a� · h
 + a� · h

� + a� · h


�+a� · h

� +                               

+b� · sin(w� · t
) + b� · cos(w� · t
) + c� · t
  , 
(7) 

where: 
- n = 8 … number of unknown system state 

components: 

<
 = -a�		a�		a�		a�		a�		b�		b�		c�/

P 

- t
: i = 1,2, … , N; N = 252 
- w� = (2 ∙ π)/(∆t�) … an annual pulsation  with 

∆t� = 12	months for monthly data 
- m = 1 … number of measurements in each time 

step, in our case monthly median value of a 
relative displacement in radial direction, z
 = y
. 

 
The matrix of the system state equation, Eq.(2), has a 

form >
 = S^. 
In order to keep the KF-model as simple as possible 

and not to involve any further parameters, which 
should be tuned in the initial phase, the optional 
control input term is not included in the model in the 
case study. All unknown influences during two 
adjacent measurements are modelled as a process 
noise.   

The measurement equation, Eq.(3), has a structure 
of a MLR model where the unknown coefficients – 
system state vector <
, varies over the time. The 
structure of the matrix D
 remains the same through 
the process, whereas its values depend on the time 
step: 
 

D
 = -1		h
		h

�		h


�		h

� 	 	sin(w� · t
)	cos(w� · t
)	t
/ . (8) 

 
To start the Kalman filtering, an initial estimate of 

the system state <�
&, and the associated a priori error 

covariance matrix N�
& are needed. Their values are very 

well initialised from the first few measurements as 
well as from a few repetitions of the KF, and influence 
strongly the acceleration of the convergence of the 
estimated system state component standard 
deviations and learning process. Wrong initial values of 
standard deviations can even lead to the divergence of 
standard deviations. 

The covariance matrix of observations M
 is usually 
known or defined externally using know standard 
uncertainty of a used measurement system or earlier 
observations. In our case we make a presumption that 
the monthly median values of relative displacements 
are defined with the same precision, which is lower 
than the precision of each measured displacements. 
Furthermore, we could assume that the replacement 
of the high precision total stations during a 21-year 
period did not influence the precision of monthly 
median values. Namely, the spread of measured 
relative displacement values for the time span of one 
month is influenced mostly by the water level in the 
impounding reservoir and irreversible deformations 
(Gamse, 2017b). For the standard deviation of KF 
measurements, the average value of differences 
between adjacent monthly median values of relative 
displacements, M-�1�/ = 0.006	m, is taken.  

The process noise enters in the system through the 
process noise matrix, which we define as: 

 
      L
 = σb ∙ S^ ,                                (9) 

 
where σb is a process noise intensity scalar. In order 
to avoid any further tuning and weighting between 
three influences, which could be very subjective, we 
keep the same process noise intensity scalar value for 
all parameters of interest. In the future research work, 
tests with different process noise intensity scalars 
could be performed.    

For the defined case study, the matrices M
 (in our 
case a scalar), >
 and L
 are constant through the 
process and independent of time. Further reason that 
we can omit indexing is evenly spaced data.  

 

IV. EVALUATION OF THE RESULTS 

The main goal of modelling and analysing of 
measured data by any mathematical functional model 
is to better understand the behaviour of observed 
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structure. In the contribution we test the KF algorithm 
which could potentially be integrated in monitoring 
systems of dam safety procedures, but also for other 
structures. The main goal of the proposed algorithm is 
to estimate observations entering in the process with 
each measurement epoch and to estimate the current 
dam integrity regarding to the previous behaviour. The 
main question is if the proposed KF algorithm is 
capable to detect significant anomalies in the dam 
behaviour, which are captured by measured relative 
displacements, in an iterative manner.   
 

The convergence properties of the minimisation of 
the conditional mean-squared estimation error are 
strongly dependent on the relative magnitude of the 
process and measurement noise, which is controlled 
by the process noise intensity scalar σb. Its value 
strongly defines the filtering process and plays a very 
important role in the learning process. The main 
criteria in the tuning of the process noise intensity 
scalar is the convergence of the trace of the a 
posteriori error covariance matrix P


?. This can be 
achieved very quickly by assigning a lower value for 
σb, which means giving a high confidence in the 
model. This is an extreme situation (under-estimation 
of the process noise) since we do not allow enough 
information to enter in the system with new 
measurements. Similar effects can be observed if the 
magnitude of M
 is increased. On the opposite 
assigning a high value for σb (over-estimation of the 
process noise) means giving a high confidence in the 
measurements. In this case we underestimate the 
information based on the previous knowledge; the 
model strongly follows measurements and does not 
remain robust to the outliers in observations, in our 
case to significant changes in measured relative 
displacements. This is analogous decreasing the 
magnitude of M
. 

 
In practice, we cannot measure the performance of 

the model with respect to the error measures directly. 
How can we then recognise if the filter assumptions 
are met and that the filter is performing correctly in 
practice? 

For the case study, as the first criteria – the 
convergence of the trace of the a posteriori error 
covariance matrix P


? is taken. The condition is met for 
the value σb = 0.000005, Fig.(3). But since the 
process noise could be under-estimated this is not a 
sufficient criterion for the model consistency or even 
for an automatization of the evaluation process.    

 

 
Figure 3. Trace of the a posteriori error covariance matrix P


? 

A very informative measure of the filter 
performance is the measurement residual – 
innovation, T
, defined as the difference between the 
observation (measurement) and its prediction made 
using the information available at time based on the 
previous knowledge of the process. It is a measure of 
the new information provided by entering of new 
measurements in the estimation process, and their 
values are an important measure of how well the 
estimator is performing. We can verify if the filter is 
consistent by applying the innovation magnitude 
bound test (Reid, 2001) to check that the innovations 
are consistent with their covariance by verifying that 
the magnitude is bounded by σ- or 2 ∙ σ-bound, Fig.(4). 
For a chosen σb value, 9.9% and 1.6% measured 
displacements lay outside σ- and 2 ∙ σ-bound 
respectively. The σ- and 2 ∙ σ-confidence bounds 
correspond to the range of residual values with a 
68%- and 95%-probability of being statistically 
insignificant for the system respectively. 

 

 
Figure 4: Innovations with σ- or	2 ∙ σ bound 

 

This simple test is already quite sufficient to check 
filter consistency. In practice, by performing KF 
additional test – normalised innovations squared f�-
test – is applied to check filter consistency and to 
analyse significant observations. The measure can be 
used to check the filter consistency by testing if the 
innovations are consistent with their covariances using 
the test statistics – normalised innovations squared 
(applied for example in Lippitsch, 20006): 

 

                             Ωh,i
� = T


P ∙ j

&� ∙ T
,                      (10) 

 
where j
 is the covariance matrix, 
 

              j
 = M
 + D
 ∙ N

&� ∙ D


P.                   (11) 

 
Under the assumption that the innovation is 

normally distributed, the normalised innovation Ωh,i
�  

follows χ�-distribution: PlΩh,i
� < χ0,�&n

� oH�p = 1 − α , 

with m degrees of freedom or dimension of the 
normalised innovation  vector and α significance level 
value.  For the case study with the number of degrees 
of freedom m = 1 and significance level values of 
α = 0.05 and α = 0.32, the confidence regions of the 
upper one-sided test for the corresponding  68%- and 
95%-probability relationship are χ�,�&�.�s

� = 3.84 and 

χ�,�&�.��
� = 1.08, Fig.(5). We assume that the correct 



4
th

 Joint International Symposium on Deformation Monitoring (JISDM), 15-17 May 2019, Athens, Greece 
 

measurements and non-significant measured relative 
displacements will be detected within these regions. 
To perform even more robust test, the normalised 
innovations squared can be compared to their moving 
average for each measurement epoch. In Fig.(5) the 
normalised innovations squared are plotted with the 
χ�-significance levels and the moving average. 

 

 
Figure 5: Normalised innovations squared,	χ�-significance 

level and moving average 
 

Both tests denote three periods of significant 
innovations and normalized innovations squared. Two 
of them are observed in years 4-5 and 19-20 with a 
drawdown of the annual water level below the 
reduced minimal water level H0
2, Fig.(2). Another 
period is in the years 10-11, where the annual water 
level was kept higher than the average minimal water 
level.  

In Fig.(6) the histogram of innovations and a normal 
density function with a mean value μ = 0.0005m and 
standard deviation 	σ = 0.0048m are plotted. 

 

 
Figure 6: Histogram of innovations with normal density 

function 
 

The autocorrelation function of innovations in Fig.(7) 
exposes again some values which lay outside the 
confidence bounds.  
 

 
Figure 7: Autocorrelation of innovations 

 

After the weighting between the process and 
measurement noise is adjusted by process noise 
intensity scalar value and different tests described 
above ( a) convergence of the trace of matrix P


?; b) 
innovation magnitude bound test; c) normalised 
innovations squared χ�-test) are satisfied we analyse 

system state components – unknown parameters of 
the simplified HST-model. Based on the KF testing, we 
can conclude that the σb value significantly influences 
the behaviour of these parameters. With a small σb 
value we allow larger changes in parameters since we 
give a high confidence in the model and the 
parameters are adjusted to the measurements. By 
choosing a σb value for which the criteria and 
conditions of the a-c tests are fulfilled, the parameter 
values stabilise at some values and expose changes 
only for the periods for which significant innovations 
and normalized innovations squared were also 
detected. Furthermore, the convergence and the initial 
stabilisation rate depend strongly on the initial values 
of parameters.  

For the case study where we have only monthly 
median values, which means only 12 observations per 
year, the initialisation phase has an important role in 
the whole process of KF. Namely, inadequate initial 
values of the parameters and their standard deviations 
can significantly influence the filtering results over 
several years or even for the whole analysed period.  

In Figs.(8-11) the parameter values with σ-bounds 
are plotted. The parameter c� describes the inclination 
of the linear trend and its changes. The convergence 
rate of standard deviations for estimated parameters 
is plotted in Fig.(12), where several iterations were 
performed to define good initial values since they have 
an effect on long term KF performance. 

 

 
Figure 8: Parameters a�	, 	a�	 with σ-bound 

 

 
Figure 9: Parameters a�	, a� with σ-bound 

 

 
Figure 10: Parameters b�	, 	b� with σ-bound 
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Figure 11: Parameters  a�	, 	c� with σ-bound 

 

 
 

 
Figure 12: Convergence of standard deviations for estimated 

parameters 
 

The HST-model enables detrending the reversible 
and irreversible deformations for each measurement 
step. Since for the case study where the main purpose 
of the dam is electricity production, the water level 
follows an annual period, which is also used for 
modelling of the temperature influence. In such cases 
it is difficult to separate reversible deformations due 
to the water level and the temperature in a manner 
that they would have practical interpretation. In future 
work even more simplified HST-model with the 
excluded parameters b�, b� (thermal effect) and a�, a� 
(hydrostatic pressure) can be analysed. Namely, the 
contribution of the temperature effect on the 
embankment dam analysed is very low and not all 
parameters of the hydrostatic term are statistically 
significant, (Gamse, 2017b). Long-term irreversible 
deformations modelled with a constant and a linear 
term, and reversible deformation as a sum of 
hydrostatic and thermal effect are plotted in Fig.(13). 

In Fig.(14) measured displacements (red line with 
dots) and predicted displacements (blue line with 
stars) with the σ-bound (green lines) of innovations 
are presented graphically. The KF performance in 
comparison with the optimal HST-model estimated by 
the MLR (black dashed line), (Gamse, 2017b), is also 

presented graphically. Direct interpretation of these 
two models is not demonstrative since the main 
principle of the KF is a one-step back/one-step forward 
estimation, whereas by adopting the MLR we estimate 
a model for a whole chosen period. 

 

 
Figure 13: Long-term trend (above) and reversible 

deformations (below) 

 

V. CONCLUSIONS 

In (Gamse, 2017b) an attempt of Kalman filtering as 
a third-order discrete Wiener process acceleration 
model which describes the dam behaviour with 
position, velocity and acceleration as system state 
components was analysed. It was concluded that the 
model can detect significant anomalies in an iterative 
manner, but it does not enable to detrend irreversible 
deformations from reversible.  

In the presented work we estimate unknown 
parameters of the simplified HST-model in an iterative 
manner by adopting KF. The advantage of the KF with 
parametric estimation is the possibility to estimate 
individual influences, to detrend reversible and 
irreversible deformations, and to directly observe the 
changes in the long-term trend of irreversible 
deformations at each measurement epoch. 

The KF model can detect statistically significant 
innovations – measurement residuals with the 
innovation magnitude bound test and normalised 
innovations squared χ�-test after the stabilisation of 
the system state components and their standard 
deviations is achieved. The statistically significant 
innovations are strongly correlated to changes in the 
water level, which deviate from minimal and maximal 
level. These deviations influence not only changes in 
the amplitude of reversible deformation but cause also 
changes in the long-term trend.  

The performance of the KF depends strongly on the 
initial values of the system state components, their 
standard deviations, standard deviation of 
measurements, and the process noise intensity scalar. 
The standard deviation of measurements can be well 
estimated by the technical specifications of a used 
measurement system and spread of observations. The 
whole process can be tuned by the process noise 
intensity scalar which defines weighting between the 
process and the measurement noise, and 
consequently weighting between the predicted and 
the true measurement. Defining an appropriate value 
of the process noise intensity scalar was the main chal-  



4
th

 Joint International Symposium on Deformation Monitoring (JISDM), 15-17 May 2019, Athens, Greece 
 

 
 

 
Figure 14: Relative displacements: measured-red line with dots, predicted-blue line with stars, σ-bound of innovations-green 

lines, optimal HST-model defined by MLR-black dashed line 
 

lenge of the algorithm. As the main criterion the 
convergence of a posteriori error covariance matrix 
was taken in the case study.   

In the presented work the model was tested on 
monthly median values. In future work we propose to 
implement the algorithm on daily measured relative 
displacements. In the case of detection of some 
potential correlations, the frequency method such 
Lomb-Scargle Periodogram can be used for an analysis 
of underlying periodicities.  

Since the knowledge of the system state increases 
with the filtering process, a constant process noise 
intensity scalar could slow down the convergence rate, 
especially if the initial values are not defined 
accurately enough or for the cases with higher 
measurement variability. In this case the innovation 
can be used to validate a measurement prior to it 
being included in the observation sequence, and the 
weight between the process and the measurement 
noise can be appropriately tuned. 

Analysis of the significance, meaning, relevance and 
deployment of the long-term trend and of reversible 
deformations for the analysed point is not the scope of 
this work. 
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