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Introduction
• Fundamental activity in land Surveying the integration of multiple sets 

of data, into a common Geodetic Reference Frame

• In the past sufficient, or even unavoidable  �local, arbitrarily 
defined geodetic DATUM

• Satellite positioning and global mapping�providing products in a 
global geodetic reference frame

• One purpose for a World frame is to eliminate use of multiple Geod
Datums. 

• Navigation, revision of old maps, cadastral surveying, deformation 
studies, geo-exploration

• Problems with a coordinate transformation due to:
- Distortions and inconsistencies in the local Datum
- Insufficient knowledge of Geodesy 
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• Distinction between GRS and GRF errors in 
observations

Best estimate of transformation parameters

• No unique transformation parameters exist between two 
GRFs

• Degree of inconsistency depends on:
- Patterns of errors in the two GRFs and
- Choice of transformation model

• Choice of transformation model :
- Size of area (sub-network) + distortions
- Type ( 3D or 2D) of network + accuracy 

• 3D and 2D transformations  - congruency 
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The Models

• Full or abridged Molodensky formulae   (φ, λ, h)

translation of origin + ellipsoid parameters changes

• Affine transformations changes in position, 
orientation, size and shape of 
a network

• Conformal or Similarity transformations unique 
preserves shape not size scale factor

• Orthogonal transformations scale factor unity
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3D Transformation models

• Relation between two GRFs requires 6 parameters: 
- 3 parameters for translation
- 3 parameters for rotations

Scale distortion: not part of a transformation
systematic distortion of  positions (network)

universal
• Transformation parameters national character

local
• Few common points Similarity transformation

preferable due to simplicity of model
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• A similarity transformation smoothes local distortions
division of the area recommended.

• Small values of rotation + scale parameters being 
expected

Bursa-Wolf 3D similarity transformation model:

• Translations: (tx,ty,tz), rotations: (εx ,εy ,εz), scale 
component: k [ deviation from unity: (1+k), expressed in ppm ].
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• This model works well if global or national transformation 
parameters are to be estimated.

• For limited areas rotations + translations are significantly correlated
Part of the rotation  affects translations 
Translation components differ from their “national” values

• Transformation parameters referring to point (Xo,Yo,Zo)     
(often the centre of mass of the network)

• Minimum number of common points required: 3
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2D Transformation models

• Relatively small networks < 100km�100km

conversion of (X,Y,Z) �(φ,λ,h) �(x,y) map projection 
coordinates (common reference ellipsoid and map projection)

• 2D similarity transformation (Helmert transformation) 
(∆x

ο
, ∆yo, θ, Κ) where K= (1+k)
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• Linear expression:

where:   a = K cosθ and b = K sinθ
the scale parameter: K = (a2+b2)1/2 and
the rotation: θ = atan(b/a)

• Alternative approach:   

• Estimation of translation in 3D (tx,ty,tz) �
• Application of translation to data set to be transformed 

(X′,Y′,Z′) �

• Conversion of (X′,Y′,Z′) � (φ΄,λ΄,h΄) � (x,y)   �
• Full 2D similarity transformation due to non 

coincidence of centers of mass.
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Data

• For the common points two sets of coordinates available in all 
cases:
GPS data for monitoring deformations expressed in ITRF2000, and 
coordinates expressed in the Hellenic Geodetic Reference System 
(HGRS 87)

1. Simulated network
Gulf of Corinth

2. Two networks of 100km�100km

Euboea
3. Large network (250km�150km)

4. Small network (10km�10km)
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• Corinth network: GPS observations at epoch 1995.8

• Euboea network: GPS observations at epoch 1997.7

• For both networks :  Old data (HGRS87) around 1970   � An 
almost 30 years time interval

• Comparing data between epochs for monitoring 
deformation difficult to distinguish discrepancies 
due to non coincidence of reference frames

real displacements.

• Simulated network: A pseudo “HGRS87” coordinate set was 
created submitting an ITRF2000  GPS data set  to a specific 
transformation and applying random noise.

• Table 1.
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Procedure - Analysis
• For the 3D similarity transformation both expressions were used.
• Submatrices Ai of the design matrix A are of the form:

or:

• While the vector of unknowns and the right hand vector are 
respectively:
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• A marked difference in magnitude exists between the 
coefficients of the unknowns this affects the 
compatibility of the significant digits in the elements of the 
normal equations matrix N.

• To overcome this a two step approach may be followed:
1. 3D Translation  � application to HGRS87 coordinate 

sets �
2. estimation of (εX ,εY ,εZ) and k

• stable LS  solution
• no need for iteration (very small parameters)
• Figure 1, Table 1 
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Table 1 Transformation parameters for 3D and 2D models with respective r.m.s. 

Networks  
Parameters 

Simulated Corinth Euboea Large  Small  

∆Χο±σX(m) -201.440±.003 -201.444±.208 -199.959±.054 -200.609 ±.161 -200.744±.276 

∆Υο±σY(m) 74.270±.003 74.260 ±.208   74.842 ±.054   74.587 ± .161 74.520± .276 

∆Ζο±σZ(m) 245.418±.003 245.413±.208 246.214±.054   245.863±.161 245.544± .276 

k± σk(ppm) 0.0±0.0 0.0±0.03 0.0±0.0 0.0±0.02 0.0±0.02 

εx ± σεx(″) 0.0±0.02 0.94±1.2 0.59±0.13 0.61±0.40 2.18± 7.6 

εy± σεy(″) 0.0±0.01 0.39±0.49 0.26±0.05 0.26±0.17 0.89 ±  3.11 

3D
 S

ol
u

ti
on

s 

εz± σεz(″) 0.0±0.02 0.80±1.02 0.51±0.11 0.52±0.34 
 

1.84  ± 6.45 

∆xο±σX(m) 148.729±.940 120.185±15.869 132.694±3.152 131.992±3.456 89.273± 2.432 

∆yo σY(m) 309.340±.940 292.535±15.869 303.605±3.152 309.750±3.456 322.510± 2.432 

k± σk(ppm) 5.0±0.22 0.51±3.7 3.4±0.74 4.8±0.81 7.1±2.9 

2D
 S

ol
ut

io
ns

 

ω± σω(″) -0.17±0.05 -1.48±0.77 -0.91±0.15 -0.97±0.17 3.10±.61 
 

∆xο±σX(m)   -17.853±3.162  -60.127±14.294 

∆yo σY(m)   -6.348±3.162  18.590±14.294  

k± σk(ppm)   1.9±1.05  4.3±3.4 

A
lt

er
na

ti
ve

 
A

pp
ro

ac
h 

ω± σω(″)   4.0±1.05  -14.5±3.4 Slide 11 Slide 18
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Table 2 Range of discrepancies in cm, for all networks and all types 
of transformation models.

Range of discrepancies in cm 
Types of solutions Simulated 

Network Corinth Euboea 
Large 

Network 
Small 

Network 
3D solution in two steps 

(case 1) 1-2.5 3-115 1-33 3.5-170 1-155 

2D solution 
(case 2) 1-2.5 1-34 1-21 1-65 0-6.5 

3D solution projected to 2D  
(case 3) 

1-2 5-48 2-27 2-60 1-19 

Comparison 3D – 2D 
solution 
 (case 4) 

1-2  2.5-29 1-28 1-40 1-13 

2D solution after 3D 
translation 

(Alternative Approach) 
 

  1-21  1-8 
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Discussion - Conclusions

• In the case of the simulated network all discrepancies in 
3D + 2D solutions < 2-3cm of the same order as LS    

residuals 

• Discrepancies only due to random errors

• In all other cases discrepancies and residuals are 
significant (several tenths of cm).

• Due to the existence of a displacement field both in the 
Corinthian gulf and the vicinity of Euboea.

back
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• In the case of the small network : 
discrepancies in the 3D > than in 2D �
in agreement with the generally accepted concept that

2D transformations are preferable for small networks.

• If local parameters are to be estimated �
it may be irrelevant whether 3D or 2D is used even for large 
networks.

• In the case of 3D transformation �

preferable the two steps approach LS solution more stable

no iterations

• For monitoring displacements �

The choice of the appropriate transformation (2D or 3D or 
any combination) is not easily answered.
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