

Vertical Movements in the

Carmel Mountain

Lior Shahar and Gilad Even-Tzur

Department of Transportation and Geo-Information Engineering
Faculty of Civil and Environmental Engineering
TECHNION - Israel Institute of Technology

The research tools

* GPS Measurements
* Precise Leveling

GPS Measurements

*1990 The Carmel network establishment
*1994 Undulation Project
$\star 1999$ An additional measurement of the network
$\therefore 90$ s G1 Network- the geodynamic network of Israel

Mathematical models

Linear modal:
$x_{i}=x_{0}+\dot{x}\left(t_{i}-t_{0}\right)$

Quadratic modal:
$x_{i}=x_{0}+\dot{x}\left(t_{i}-t_{0}\right)+\frac{\ddot{x}}{2}\left(t_{i}-t_{0}\right)^{2}$

Choosing the datum points

$$
\begin{aligned}
& H_{0}: \dot{x}_{1}=\dot{x}_{2}=\ldots .=\dot{x}_{r}=0 \\
& H_{1}: \dot{x}_{1} \neq 0\left\|\dot{x}_{2} \neq 0\right\| \ldots . \| \dot{x}_{r} \neq 0
\end{aligned}
$$

We will reject Ho with a confidence level of $1-\alpha$ if

$$
\frac{\left|\dot{x}_{1}\right|}{\sigma_{1}}>Z_{1-\frac{\alpha}{2}}\left\|\frac{\left|\dot{x}_{2}\right|}{\sigma_{2}}>Z_{1-\frac{\alpha}{2}}\right\| \cdots \cdots \cdots . .| | \frac{\left|\dot{x}_{6}\right|}{\sigma_{k}}>Z_{1-\frac{\alpha}{2}}
$$

Adjustment computation

$\left[\begin{array}{c}L_{1} \\ L_{2} \\ \vdots \\ \vdots \\ L_{k}\end{array}\right]-\left[\begin{array}{c}V_{1} \\ V_{2} \\ \vdots \\ \vdots \\ V_{k}\end{array}\right]=\left[\begin{array}{ccccc}A_{1} & 0 & 0 & \cdots & 0 \\ 0 & A_{2} & 0 & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & & \ddots & 0 \\ 0 & 0 & 0 & \cdots & A_{k}\end{array}\right]\left[\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ \vdots \\ X_{k}\end{array}\right]$

Datum Transformation

Helmert matrix with a single defect:

$$
H^{T}=\left[\begin{array}{lll}
1 & 1 & \ldots
\end{array}\right.
$$

The Jacobian matrix:

$$
J=I-H\left(H^{T} P_{X} H\right)^{-1} H^{T} P_{X}
$$

motal	linear modal						quadratic modal			
xena	1987.1992		1991-2003		1987-200		$1987-2003$			
plitat	weaty	1.968	velaty	1966	velaty	1968	wiotaty	1.960	acceration	1966\%
${ }^{5091}$	ses	${ }^{1}$	${ }^{1220}$	${ }_{0}$	-uss	0.38	-449	1 1ss	osx	${ }^{0.12}$
${ }_{\text {sers }}$						(136				
459	4s	${ }^{103}$	${ }_{122}$	ast	${ }^{0.10}$	-3sa	San	${ }_{13 \times}$	\%onc	
	4sp	095	${ }^{\text {Lum }}$	${ }^{038}$,out	${ }^{028}$	ssas	${ }^{134}$	${ }_{0} 0 \times 0$	
4	${ }^{3} 18$	0 osp	$\bigcirc 93$	0331	anil	028	${ }^{\text {smas }}$	${ }^{1.146}$	${ }_{\text {oss }}$	44
	${ }^{2 \times 5}$	${ }^{0.2}$	osac	0313	ane	${ }^{028}$	${ }^{3} 38$	${ }^{\text {ana }}$		17
${ }^{\text {ancza}}$	-1si	oso	${ }^{\text {osem }}$	${ }^{024}$	007	${ }^{0.1 s 5}$		074	${ }^{028}$	as
		$\underbrace{}_{\substack{\text { asem } \\ \text { amam }}}$			${ }_{\substack{0.14 \\ 0.0 \\ \text { com }}}$	${ }_{\substack{0.188 \\ 0.17}}$	-0x2	${ }_{\substack{\text { Osse } \\ \text { oss }}}$	${ }_{\substack{0.19 \\ \text { anas }}}^{\text {and }}$	\%
	,	coum	-	${ }_{\substack{0.184 \\ 0.18}}^{\substack{\text { ars }}}$	${ }_{\text {cose }}^{\text {ans }}$	-0.17	${ }^{\circ} 8$		${ }_{\substack{\text { cose } \\ \text { cosis } \\ \text { cosi }}}$	
2m	${ }^{\text {and }}$	${ }^{0213}$	0.107		${ }^{\text {cose }}$	oses	.0212	020	${ }^{\text {oma }}$	0
${ }^{205}$	mals	${ }^{0.150}$	-omo		${ }^{\text {anl }}$	oses	009	${ }^{022}$	${ }^{\text {ane }}$	
	${ }^{027}$	oss	.027	023			${ }^{0218}$	070		
4	- 0.82	0.600	${ }_{*} 275$	${ }_{0} 27$.o.n		- 087	008x	${ }_{\text {ons }}$	nos
4	-aso		nor1	аз	\%os	\%12				
4×0	-1186	osse	020		-oss	0,4	1.17	${ }^{1095}$	${ }_{0,18}$	0.10
482	-1ss	\%86			-0.85	sso				
\%exs	${ }_{-1201}$	${ }_{\text {cose }}$	033	${ }_{0}$ O3s	-	coss	088	1,13	\%18	013

Solution and accuracy

$$
\begin{aligned}
& \dot{X}_{\text {new_datum }}=J \dot{X} \\
& \ddot{X}_{\text {new_datum }}=J \ddot{X}
\end{aligned}
$$

$\Sigma_{\dot{X}_{\text {nov }} \text { damom }}=J \Sigma_{\dot{X}} J^{T}$
$\Sigma_{\tilde{X}_{\text {neve datamn }}}=J \Sigma_{\tilde{X}} J^{T}$

Conclusions

The monitoring based on 23 points that are scattered the Carmel Mountain's breadth and basically includes 3 measuring cycles.
The simultaneous solution indicates stability of the western slopes relatively to the mountains exterior and moderate rising of the mountain's exterior at a rate under 1 mm per year compared to the eastern slopes.

- Despite the importance of the simultaneous solution, it includes the loss of much valuable information, therefore solutions were arrived at with the use of two intersects on the time axis.
- From the analysis of these solutions, it is seen that in the first period, the Carmel ridge has risen at a rate of up to 6 mm a year with regard to its western slopes and at a rate of approximately 2 mm a year compared to the eastern slopes. Analysis of the second period's results indicates that the ridge's center does not rise, and even sinks at a rate of 1 mm per year compared to the western slopes.

