

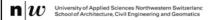
n w University of Applied Sciences Northwestern Switzerland School of Architecture, Civil Engineering and Geomatics

Field Procedures for Testing Terrestrial Laser Scanners (TLS)

A contribution to a future ISO standard

Reinhard GOTTWALD, Switzerland

©FHNW_HABG_IVGI 2008

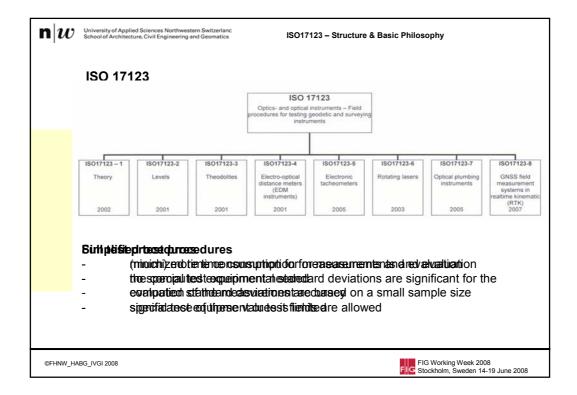

FIG Working Week 2008 Stockholm, Sweden 14-19 June 2008

10 University of Applied Sciences Northwestern Switzerland School of Architecture, Civil Engineering and Geomatics Field Procedures for Testing Terrestrial Laser Scanners (TLS) – A contribution to a future ISO standard

- Test Procedures for TLS?
- ISO17123 Structure & Basic Philosophy
 - A Contribution to a new ISO Standard 'TLS'
 - Simplified Test Procedures
 - Full Test Procedures
- **Conclusions & Recommendations**
- Special thanks

Fields Test Procedures for TLS?

Existing & published Test Procedures for TLS


- prove the limits and metrological particularities of TLS
- show valuable perceptions for the practical use of TLS
- are more or less time-consuming
- are hardly suitable for a simple and quick system test by the user on site

• Fields Test Procedures for TLS should

- prove the performance of TLS within the given specifications
- be performed quickly and easily on site
- need no special test equipment
- follow the ISO 17123 basic philosophy

©FHNW_HABG_IVGI 2008

2

A Contribution to a new ISO Standard 'TLS'

ISO 17123_9 ?

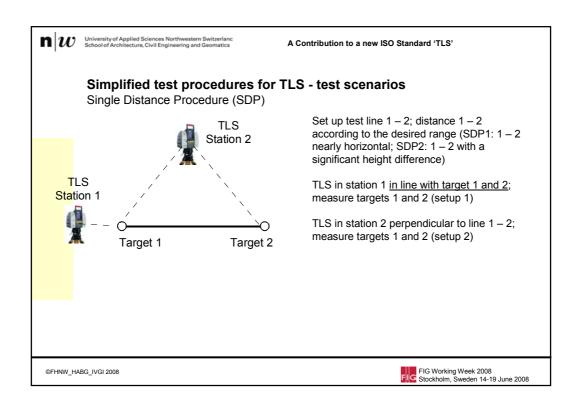
Simplified test procedures (focus)

Following the ISO 17123 basic philosophy, these boundary conditions were given for the development of possible simplified test scenarios for TLS:

- independent of the functional principle (panoramic-, camera-view-, time of flight-, phase measurement-TLS)
- secure detection of distance and/or angle deviations
- use of standard measurement equipment only (i.e. no use of additional reference sensors, e.g. total station or special test equipment)
- maximum time needed for measurements, evaluation and final decision less than 1 hour

©FHNW_HABG_IVGI 2008




University of Applied Sciences Northwestern Switzerlan

A Contribution to a new ISO Standard 'TLS'

Simplified test procedures

- the given boundary conditions have to be fulfilled
- test measurements were carried out with Leica ScanStation 2 Leica HDS6000 Leica ScanStation 2 (not calibrated)
- tolerances are calculated to a point accuracy of 4.0 mm for a scanned target at a significance level of S = 99%

n University of Applied Sciences Northwestern Switzer School of Architecture, Civil Engineering and Geoma

A Contribution to a new ISO Standard 'TLS'

Simplified test procedures for TLS - test scenariosSingle Distance Procedure (SDP)

Procedure	TLS	Line	TLS Station 1 [m]	TLS Station 2 [m]	Δ=S1-S2 [mm]	Tolerance S=99% [mm]	Reference TCRP1201 [m]
SDP1	SS2	1-2	44.198	44.199	-1	14	44.203
SDP2	SS2	1-2	44.900	44.899	1	14	44.905
Total time required	< 60 min						

- independent of the functional principle; use of standard measurement equipment only; easy to perform; total time required < 60 minutes
- no redundancy; no independent control

TLS SS2 - Leica ScanStation2 6000 - Leica HDS6000

SS2nc - Leica ScanStation2 (not calibrated)

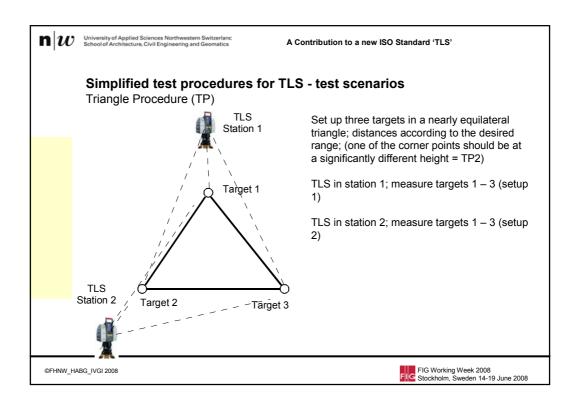
n *w* University of Applied Sciences Northwestern Switzerland School of Architecture, Civil Engineering and Geomatics

A Contribution to a new ISO Standard 'TLS'

Simplified test procedures for TLS - test scenarios

Crossed Double Distance Procedure (CDP)

Procedure	TLS	Line	TLS Station 1 [m]	TLS Station 2 [m]	Δ=S1-S2 [mm]	Tolerance S=99% [mm]	Reference TCRP1201 [m]
CDP2	SS2	1-2 3-4	43.046 43.978	43.046 45.981	0 33	14	43.049 43. 9 83
	6000	1-2 3-4	43.050 43. 9 85	43.048 43.983	2 -21	14	43.049 47.481
	SS2nc	1-2 3-4	42.812 43.000	42.724 47.908	88 290	14	42.925 43.020
Total time	≈60 min						


+ independent of the functional principle; use of standard measurement equipment only; easy to perform; total time required ≈ 60 minutes, independent control

TLS SS2 - Leica ScanStation2 6000 - Leica HDS6000

SS2nc - Leica ScanStation2 (not calibrated)

©FHNW_HABG_IVGI 2008

FIG Working Week 2008 Stockholm, Sweden 14-19 June 2008

n University of Applied Sciences Northwestern Swi School of Architecture, Civil Engineering and Geo

A Contribution to a new ISO Standard 'TLS'

Simplified test procedures for TLS - Suggestions Triangle Procedure (TP)

Procedure	TLS	Line	TLS Station 1 [m]	TLS Station 2 [m]	Δ=S1-S2 [mm]	Tolerance S=99% [mm]	Reference TCRP1201 [m]
TP2	SS2	1-2 2-3 3-1	45.595 43.978 39.058	45.598 43.981 39.059	-3 -3 -0	14	45.597 43. 483 36.065
	6000	1-2 2-3 3-1	45.599 43.985 39.062	45.598 43.983 39.069	1 -21 6	14	45.597 43. 483 36.065
	SS2nc	1-2 2-3 3-1	42.674 43.000 36.228	42.671 47.903 36.738	3 290 - 79 5	14	42.787 43.226 36.986
Total time	≈60 min						

+ independent of the functional principle; use of standard measurement equipment only; easy to perform; total time required ≈ 60 minutes, independent control

TLS SS2 - Leica ScanStation2 6000 - Leica HDS6000

SS2nc - Leica ScanStation2 (not calibrated)

©FHNW_HABG_IVGI 2008

FIG Working Week 2008 Stockholm, Sweden 14-19 June 2008

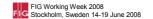
A Contribution to a new ISO Standard 'TLS'

Full test procedures for TLS

The following boundary conditions are given for a full test procedure for TLS:

- more or less independent of the functional principle of the tested TLS
- use of reference sensor systems and/or fixed test setups is possible
- significant evaluation of accuracy und systematic deviations based on statistical processes
- maximum time needed for measurements, evaluation and final decisions less than $1\!\!/_{\!\!2}$ day

©FHNW_HABG_IVGI 2008


University of Applied Sciences Northwestern Switzerlan

A Contribution to a new ISO Standard 'TLS'

Full test procedures for TLS

The most important parameters to be determined are:

- probing error
- spacing error
- flatness measurement error
- target error
- angle measurement deviation
- zero point error (range finder)
- scaling error (range finder)
- target offsets and sphere diameter

A Contribution to a new ISO Standard 'TLS'

Full test procedures for TLS

It is suggested that a modular approach be used to enable also scannerspecific tests.

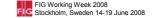
Basic module

- use of a specific 3D test net
- covers the determination of the following deviations: probing error, spacing error, target error, angle measurement deviation

Add-on modules

- covering the characteristics of specific scanner types and TLS sensor components
- determination of test parameters which are not covered by the basic module

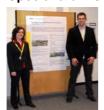
©FHNW_HABG_IVGI 2008


University of Applied Sciences Northwestern Switzerland

Conclusion & Recommendations

Conclusion & Recommendations

- It is possible to set up suitable simplified and full test procedures for TLS following the ISO17123 basic philosophy
- It is favorable to use sphere targets instead of plane targets
- Both multiline-procedures (CDP, TP) are suitable for a simplified field test of TLS (preferable use setup CDP2 with a significar______
- Use a modular approach for the full test procedul module in an ISO standard
- Test procedures based on the new ISO standard implemented then by the system manufacturers in



n w University of Applied Sciences Northwestern Switzerland School of Architecture, Civil Engineering and Geomatics

Special thanks

Special thanks to ...

Maja Rothweiler & Lukas Schmid

FHNW_IVGI Diploma-Thesis 2007

René Scherrer

Chairman ISO TC 172 SC6

Leica Geosystems, Heerbrugg

