

### THE PERMANENT GNSS NETWRK AND ITS RTK APPLICATION IN ISRAEL

Einat SALMON
Survey of Israel (SOI)

TS 1C – CORS-RTK I Einat Salmon The permanent GNSS Network and its RTK Application in Israel

FIG Working Week 2009 Eilat, Israel, 3-8 May 2009



#### Introduction

- The first Israeli permanent network stations GIL (GPS Israel), was founded in 1996 in a combined effort of the Israeli Geological Survey, Israeli Space Agency, Survey of Israel (SOI) and Tel-Aviv University.
- During 2002 the Permanent Network Stations' responsibility for the operation was transferred to the Field division of the Survey of Israel

### **Updating the Israeli Reference station** network and modifying it to the surveying

revolution.

- By the end of 2002 the Israeli network contained 11 reference stations.
- The data was transferred by old fashioned models of technological means.
- The data was saved in unsecured and non user friendly FTP site.
- The information sampling rate intervals was 30 seconds.



# **Updating the Israeli Reference station** network and modifying it to the surveying

revolution.

- The system automation became affective after the turning point began during 2002 when it was decided to completely automate the system.
- A control center was built.
- Management programs were installed.
- The information supplied to surveyors on the web site has been transformed to an organized web site.
- Data sampling rate was gradually increased THLA 19.2K from 30 seconds to 5 seconds between epochs.



# Updating the Israeli Reference station network and modifying it to the surveying revolution.

- VRS software was added, allowing condensing the information for remote areas (far from a permanent station).
- Throughout the years 8 reference stations were added, on stable structures, mainly for geodetic utilization.
- It was decided to rename the network as APN (Active Permanent Network).







#### Declaring new based network Israel 2005

- In the past the Israeli network accuracy (ITM-Israel transvers Mercator) was about 10cm.
- Due to the accuracy of the basic control points, the inconsistencies between neighboring projects which are based on different control points could reach the order of up to 10-15 cm.
- The SOI set its goal of achieving accuracy of 5 cm at 95% confidence level
- It was decided to use the APN as the base points for surveying in Israel.
- On 1/10/2004 SOI defined a new attribution system for the APN. It was set as fixed coordinates of the permanent GPS stations.
- The new system is called IGD05 (Israel Geodetic Datum 2005).
- Seven parameters were published for transformation from IGD05 system to the Israeli coordinates grid.



#### Publishing new surveying regulations

• SOI began writing new surveying regulations for defining new points grade.

Measured exclusively by SOI

G0 – The APN network

G1 - 150 Geodetic-geodynamic control points

 $G2 - \sim 1200$  stable, GNSS suitable, control points

Measured by private surveyors as well as SOI

S1 - determined by GNSS measurements only

S2 - determined by GNSS and EDM measurements



#### Publishing new surveying guidelines

 SOI published new guidelines, annex to the existing surveying regulations established in 1998, enabling the surveyors to use a single GPS receiver for measuring details, boundaries of lots for cadastral purposes and control points



# **Upgrading the reference stations network** with RTK-DGPS application

- During 2006 the permanent stations array was upgraded and the RTK-DGPS application was added.
- Two additional servers which log information at 1 second intervals were installed.
- The stations information was transferred to a cellular network server and forwarded to the surveyors equipped with a cellular modem on site.
- The communication is enabled by one of the following methods: VRS, FKP and direct connection to reference station.











- Reference Stations Applications Benefits are:
  - \$ using only one RTK receiver
  - \$ Often a single person can perform the job.
  - \$ The permanent stations method saves valuable time of searching for control points in the surveying area.
  - \$ In the past, large surveying companies used both instruments for surveying, nowadays they can use each instrument separately and double their production.
- The rate of the post processing data from the reference station web site is  $12\phi$  (cents) per minute of information.
- RTK information cost about 25 cents per minute;



- After the permanent stations achieved a state of the art technology the advantages of using the APN are:
  - Uniformity
  - Accuracy
  - Reliability
  - Simplicity
- The survey of Israel will continue developing and improving the APN remaining up to date with technology and measurement techniques.



## Thank you for your attention!

TS 1C – CORS-RTK I Einat Salmon The permanent GNSS Network and its RTK Application in Israel

FIG Working Week 2009 Eilat, Israel, 3-8 May 2009