AIR POLLUTION CLIMATOLOGY IN SPATIAL PLANNING FOR SUSTAINABLE DEVELOPMENT IN THE NIGER DELTA, NIGERIA

Ogba C. Okoko (Nigeria) and Utang, B. Pius (Nigeria)

TABLE OF CONTENTS

- Title
- Abstract
- Introduction
- The Problematic
- Land uses and Air Pollution Patterns
- Wind speed/direction in the Niger Delta
- Implications for Air pollution patterns
- Conclusion and policy recommendation
- References

ABSTRACT

- The paper highlights the relevance of spatial planning in sustainable development
- Justifies the importance of integrating air pollution in planning development in a coastal milieu.
- Underscores the role of air pollution climatology in understanding air pollution dispersion
- Also in the spatial variation in air pollutant concentration

- Data on wind speed and direction and concentration of human activities that affect air quality
- Descriptive analysis illustrated the spatial variation in pollution in temporal context
- Paper recommends planning infrastructures, industries and residential areas appropriately
- Taking into consideration adequate distance of residences from busy road networks, construction sites and industrial zones

INTRODUCTION

- Sustainable development as used in paper synonymous with Environmental sustainability
- That is development that promotes environment friendliness
- A policy instrument that facilitate this is Spatial Planning
- This is akin to environmental (land use) planning at all spatial scales
- An important consideration in such plans is Air Quality

- Dynamic in space-time, attributed to atmospheric dynamics such as wind
- Understanding pollution dynamics underscores Air Pollution Climatology
- Useful in planning allocation of infrastructure vis-à-vis population
- Paper attempts a justification of its relevance in accelerated sustainable development

The Problematic

- Many land uses in the Niger Delta are capable of interacting with air quality, thus compromising the suitability for humans
- · Studies confirm differential distribution of parameters
- Suggest atmospheric gradients and differential sources location

- Efforts at strategic location and allocation on the basis of climatic gradients not integrated in most planning
- This is necessary in a coastal milieu such as the Niger Delta
- The coastal environment is distinctive, characterized by dynamic and energetic atmospheric conditions (NAS, 1992)

Land Use and Air Pollution Patterns

- Spatial variation in air pollution attributed to land use differential
- Heterogeneous regional land use means spatial inequality in air quality contribution and concentration
- No studies on spatial variation in air quality visà-vis land uses
- A heterogeneous pattern of air quality attrition in the region exist

- Clearly exemplified in the cities, where land use zoning, are made up of high built-up areas and very cosmopolitan
- The built-up influences ventilation and attenuate wind speed and direction
- In the rural areas are oil and gas facilities capable of generating fugitive pollutants Fig. 1
- The location of these and settlements should consider wind speed/direction as well as land cover that attenuates these climatic parameters

Wind speed and direction in Air Pollution Variation

- The need for development planning that integrates air pollution climatology very important
- Air pollutants have local, regional and continental effects
- Wind in an attempt to equalize pressure gradient carries with it pollutants

- Concentration dependent on prevailing wind direction
- Generally upwind location have less pollutant concentration
- Calm and Light wind accelerate pollutant concentration around emission sources
- Speed and direction change with season; hence pollutant concentration variation

Winds in the Niger Delta

- · Winds vary with location and season mostly in speed
- At the global scale, the synoptic wind is south westerly (Fig 2 -5)
- Speed varies between 0-2.99 ms⁻¹, 3-5.99 and 6-7.99 ms⁻¹, with season and location
- Light winds to gentle breeze most dominant (Fig 2-5)

January Wind

- Station base pattern shows winds predominantly in four directions in January (S, SW, W and NW) and three in July (S, SW, and W)
- Speed mainly calm and light wind in January and light to gentle breeze July (Tables 1 and 2) $\,$
- Corroborates synoptic data, with light wind mainly in the coast in January, greater part of the region light to gentle in July (Figs 2 and 4)
- Also varies between stations, suggesting differential air pollution pattern

January conditions at selected locations

	SPEED (MS-1)												
Location	NE	Е	SE	S	SW	W	NW	N	0-0.2 (CAL M)	0.3- 1.5	1.6- 3.3	3.4- 5.4	5.5- 7.9
Akure	8.42	8.18	7.57	14.1 6	14.2 9	20.3 9	8.42	5.50	13.06	13.06	53.8 4	19.29	0.98
Benin	6.53	5.25	2.34	7.30	10.5 0	10.5 0	4.68	3.26	49.68	12.21	20.5 1	16.82	1.77
Warri	2.59	0.73	1.29	18.6 3	14.5 7	12.3 6	6.27	11.2 6	32.28	15.13	31.9 2	19.58	1.10
Port Harcourt	7.98	0.54	0.54	6.09	4.74	8.86	11.0 7	3.52	46.04	8.05	24.6 1	17.58	3.72
Owerri	10.62	2.07	3.11	7.18	12.5 6	9.73	8.78	4.35	42.09	32.57	15.8 7	5.66	3.80
Uyo	19.51	4.54	10.0 6	3.56	8.47	4.19	23.1 9	13.0 0	12.76	25.77	47.6 1	13.74	0.12
Calabar	12.4	3.0	3.7	13.9	13.4	12.3	16.2	12.4	-	-	-	-	-
Total	68.05	24.3 1	28.6 1	70.9	78.5 3	78.3 3	78.6 1	53.2 9	195.91	106.7 9	194. 36	92.67	11.49
Mean	9.72	3.47	4.09	10.1 3	11.2 2	11.1 9	11.2 3	7.61	32.65	17.80	32.3 9	15.45	11.92

Ju	ly co	ond	itioı				ctec	l loc	catio	ns					
	DIRECTION										SPEED (MS ⁻¹)				
Location	NE	Е	SE	S	SW	W	NW	N	0-0.2 (CAL M)	0.3- 1.5	1.6- 3.3	3.4- 5.4	5.5- 7.9		
Akure	0.36	0.72	1.79	14.2 3	34.0 9	36.8 4	4.06	0.72	7.17	7.89	45.5 8	33.37	5.98		
Benin	1.35	1.94	2.98	11.7 1	18.1 2	17.0 6	6.25	1.04	39.59	8.88	26.9 9	20.14	4.40		
Warri	-	-	1.86	32.4 4	19.3 6	11.3 6	0.56	1.49	32.03	17.1 3	30.5 4	18.25	1.68		
Port Harcourt	0.37	0.44	1.11	9.53	23.8 7	12.7 9	5.40	0.74	45.75	9.01	18.1 1	19.44	7.69		
Owerri	0.58	1.91	7.51	15.9 7	25.0 4	18.0 3	4.41	0.58	26.29	35.8 6	25.8 7	8.65	3.33		
Uyo	4.38	3.00	17.1 5	11.1 4	28.1 6	10.9 8	11.8 9	1.38	12.02	42.0 5	36.8 0	7.63	1.50		
Calabar	5.9	2.6	5.5	19.6	24.1	13.8	8.3	5.1		,	-	-	-		
Total	14.66	10.6 1	31.9 4	114. 58	172. 74	120. 8	40.8 8	11.0 5	162.85	120. 82	183. 89	107.4 8	24.5 8		
Mean	2.44	1.77	4.56	16.3 7	24.6 8	17.2 6	5.84	1.58	27.14	20.1 4	30.6 5	17.91	4.10		

Implications for pollution patterns

- Pollutants concentration high, given generally stable atmosphere
- Concentrations however higher in the hinterland than coastal fringes because of higher percentage of calm to light winds
- Varies between seasons, with coastal concentration generally lower in all seasons, except end of Autumn and first quarter of Winter
- Generally higher concentrations in November to January

Implications for spatial planning

- Increasing industrial and infrastructure development and builtup in cities means increased concentration of pollutants and high skill in planning
- The relatively stable atmosphere implies appropriate allocation of land uses
- Residential areas South East of emission sources such as industrial zones, oil and gas installations, and far away
- Separated by Green belts in between, applicable to residences along high traffic routes

THANK YOU FOR LISTENING