

Visionmap A3

Practical Experience

Our WEB-Site

www.visionmap.com

Aerial Photogrammetric System Visionmap A3

Aerial Survey Digital Large Frame
 Camera

and

Ground Processing System for fully automatic Orthophoto production

Visionmap A3 Differentiators

- Very High productivity of Aerial Survey
- Vertical and Oblique images in one flight by one camera
- Fully automatic Orthophoto production (including all computational processes)

Large Aerial Survey Area

Visionmap Practical Experience

Aerial Survey Productivity

Processing Productivity

Accuracy Results

A3 Aerial Survey Productivity

Camera Parameters	А3	Typical Digital Large Frame Camera	Standard Analog Camera				
Focal length (mm)	300	100	150				
CCD Pixel size / scanning	9	7	15				
Frame size (pix)	~62,500 7,850	15,000 10,000	15,000 15,000				
GSD = 5 cm; 2α = 20°							
Productivity (sq.km /hour)	158	71	50				
Productivity comparison	316%	142%	100%				
GSD = 25 cm; $2\alpha = 50^{\circ}$							
Productivity (sq.km /hour)	3,363	1,524	1,067				
Productivity comparison	316%	143%	100%				

A3 Processing productivity

Ground resolution (cm)	12	30	30	15	15
Area (sq. km)	195	247	247	700	2100
Image volume (GB)	31	23	13	80	235
Number of flight lines	8	7	4	8	15
Side overlap (%)	57	84	66	70	70
Independent processing (hour)	9	8	4	31	133
Simultaneous processing (hour)	11.5		-	1	_
Productivity for Independent processing (sq. km / 24 hours)	506	749	1482	538	379
Productivity for Simultaneous processing (sq. km / 24 hours)	1133		-	-	(-
Operator time (hour)	0.5		0.5	0.5	0.5

A3 Accuracy results

Pilot Project	Height (m)	Area (sq.km)	GSD (cm)	Number of lines	GCP/ChP	RMSx (m)	RMSy (m)	RMSz (m)
Hagerstown	2500	215	8	5	13/39	0.17	0.19	0.16
Hagerstown	2500	215	8	5	16/22	0.06	0.08	0.10
Netania	3500	195	11	8	0/22	0.30	0.27	0.26
Netania	3500	195	11	8	11/11	0.19	0.11	0.23
Netania	8500	247	26	7	0/27	0.54	0.44	0.47
Netania	8500	247	26	7	11/14	0.21	0.35	0.44

GCP 0 – block adjustment without Control points

Forward overlap – 55-65%, Side overlap – 50-80%

No cross strips (flights)

Visionmap A3 Camera

A3 - Light weight camera

• Computer:

```
Weight – 10 kg;
Size - 25*40*40 cm;
```

• Camera:

```
Weight – 15 kg;
Size - 50*50*40 cm;
```

- Installation time 15-30 min;
- No need in special airport transportation;

A3 camera design

- Digital sweep-framing double lens metric camera;
- Cross-track sweep motion;
- Focal lens 300 mm;
- Folded optics;
- Maximal sweep FOV–104 degree;
- FMC, SMC, Vibration mirror based optical compensation and stabilization;

A3 on-board computer

- Intel based computer;
- On-board JPEG 2000 compression;
- Dual frequency GPS (Omni Star supported);
- Internal power supply;
- Snap-on 0.4 TB solid state flash storage;
- Weight 10 kg;
- Size 25*40*40 cm.

Super large frame - SLF

 Up to 29 double frames in one sweep;

 Forward overlap between single frames - 2%;

 Side overlap between single frames - 30%;

 SLF – quasi-panoramic frame for stereo compilation;

 High accuracy. SLF – for visualization only. All photogrammetric measurements are calculated through the single frame.

A3 Flight Principles

 2α – maximal allowable angle for orthophoto creation.

FOV - 96° (Field of view is changed according the speed of flight and the altitude).

FOV = 96°

One strip coverage for orthophoto

Full coverage is used for block adjustment

and acquiring oblique images

Ensuring accuracy & robustness

 Millions of tie points and photogrammetric constrains;

 Every point is measured in many images and is viewed from many directions – multi-ray photogrammetry and multi-directional imagery; Orthophoto Area

Different intersection angles;

High Accuracy, Robustness and Reliability

Bundle block adjustment

- Self-calibration
- Millions of tie points
- Special tools for QC
- No need in IMU
- No need in Control Points
- Fully automated process

Conclusion

Aerial Survey Cost Reduction

- Pre-flight preparation time reduction;
- Flight time reduction;
- Good weather time maximal utilization;
- Very effective aerial survey in urban area;
- Number of planes, cameras and project execution time reduction.

Photogrammetric processing cost reduction

- Fully automatic triangulation, DTM, orthophoto and mosaic;
- Very high processing productivity;
- One program processing workflow;
- Computer system scalability;
- Multiple projects parallel execution;
- Generally no need in Control Points;
- Effective stereo-compilation with SLF.

Thank you for your attention!

www.VISIONMAP.com

