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SUMMARY

Hyperspectral Images are worthwhile data for mamec@ssing algorithms (e.g. Dimensionality
Reduction, Target Detection, Change Detection, Stfiaation and Unmixing). Target detection
is a key issue in processing hyperspectral imagpectral-identification-based algorithms are
sensitive to spectral variability and noise in astjion. In most cases, both the target spatial
distributions and the spectral signatures are wvkneso each pixel is separately tested and
appears as a target when it significantly diffecsrf the background. On the other hand, there are
many (e.g. Modified Spectral Angle Similarity (MSA&s a Deterministic and Covariance-based
Matched Filter Measure (CMFM) as sub-pixel approaagorithms for target detection. As a
new algorithm, Support Vector Machine (SVM) is @fus$ technique for Target Detection.

In this paper, first we propose a theoretical dis@n aimed at understanding and assessing the
potentialities of MSAS, CMFM and SVM algorithmsligper-dimensional feature spaces. Then,
we assess the effectiveness of SVM with respecvteentional. To sustain such an analysis, the
performance of SVM is compared with those of twheotTarget Detection algorithms, one-
against-all, the one-against-one. Finally, Différgerformance indicators have been used to
support our experimental studies in a detailed aowlirate way (i.e., Target Detection accuracy,
the computational time, the stability to parameting).

The results obtained on a real Visible/Infrared dmg Spectroradiometer hyperspectral dataset
(CASI) allow concluding that, SVM is a valid andegftive alternative to conventional Target
Detection algorithms of hyperspectral remote sendata.
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Davood AKBARI, Abdorreza SAFARI, Iran

1. INTRODUCTION

Recent advances in hyperspectral sensors withdggbtral and spatial resolution have led to an
increased interest in exploiting spectral imageny thrget detection. Given the availability of

spectral libraries for a wide range of materiakstedtion algorithms that exploit a known target
signature have been widely investigated. It has ls®wn (Scharf and Friedlander, 1994) that
such algorithms are dependent on the degree oélsigismatch between the spectral libraries
and the spectra observed in an image.

Automatic target recognition (ATR) has experiencggnificant strides with the advent of
hyperspectral imaging (HSI) sensors. ATR systenagilshbe able to detect, classify, recognize,
and/or identify targets in an environment where Iblaekground is cluttered and targets are at
long distances and may be partially occluded, abgteby weather, or camouflaged (Yamany,
Farag and Hsu, 1999). HSI sensors provide plentypettral information to uniquely identify
materials by their reflectance spectra. A materiaffectance spectrum contains the reflectance
values of the material as a function of wavelengtthough it is theoretically possible for two
completely different materials to exhibit the saspectral signature, targets in ATR applications
are typically man-made objects with spectra th#fediconsiderably from the spectra of natural
background materials (Manolakis and Shaw, 2002).

In HSI target detection applications, the targeés sparse and typically occupy less than 1% of
the total pixels in a hyperspectral (HS) scenedeeng traditional spatial processing techniques
impractical. Consequently, most HSI detection atgors exploit the spectral information of the
scene, an approach known as nonliteral exploitatidghe HSI literature (Manolakis, Marden and
Shaw, 2003). One of the main challenges in HSIgBsitig is spectral variability, which refers to
the phenomenon that the spectra measured from ssmplthe same material will never be
identical. In other words, spectra of the same ristare not fixed due to the inherent variations
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present in the material. Further spectral varigbik introduced by external factors such as
atmospheric conditions, sensor noise, and illunronatariations (Shaw and Burke, 2003).

Although many detection algorithms have been dgezloover the years, spectral variability

poses challenges for these algorithms. While thehsistic detectors are mathematically tractable
and can work well in some situations, they are ompfimal under the assumption of the

multivariate normality of the data. The quadratieyhhan—Pearson detector requires the
covariance matrix of the target class, which is aatilable if one is given a single spectral

signature obtained from a library (Vapnik, 1998)réal-life scenarios, the multivariate normality

assumption is often violated because an HS image aoatain multiple types of terrain, thus

causing detection performance to suffer (Henz aadnr, 1997).

Kernel methods have become increasingly populaa imariety of pattern recognition (PR)
applications. The recently-developed support ventachine (SVM) has its roots in statistical
learning theory and is an emerging nonparametieageh for describing a set of data (Tax and
Duin, 2004). It has been successfully applied i #ineas of facial expression analysis, gene
expression data clustering, image retrieval andtersensing image classification.

In this letter, we will use the SVM to perform tatgdetection in HS imagery. Experiments on
urban HSI scenery confirm that the proposed SVM#basethod can provide substantially lower
false positive rates (FPRs) while maintaining higinee positive rates (TPRs) when compared to
other detectors. Section Il provides formulation méthods. Section Il provides Accuracy
Evaluation MethodSection IV provideshe experiments and results, and conclusions audefu
work are discussed in Section V.

2. SUGGESTED METHODS
2.1 Modified Spectral Angle Similarity (M SAS)

Given two vectors as the target and pixel speatspectral angle between this pair of vectors can
be defined. In the case of a hyperspectral imédnge;iyper-angle” is calculated with:

a=cos’(s S; s Il s I) = cos (Zl L Sisy ZI _,Si 21 1/2[Z| ., Si 2112) Eq.l

The smaller angle means more similarity betweerptkel and target spectra. Here, we prefer to
use a modified spectral angle. In above equatiols between 0 and/2, so we can easily obtain,

MSAS—2—a by this rescaling the values of measure cortedq, 1].
n

2.2 Covariance-based Matched Filter Measure (CMFM)
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Covariance-based Matched Filter Measure, CMFM,nie of the anomaly detection methods.
The aim of anomaly detection is to search and finknown targets with low probability of
existence in the image. The anomaly detection wdxksed on properties of covariance or
correlation matrix of the target.

In Eq. 2. CMFM measures similarity of targets sdaj (s includes spectral properties) after
reducing their mean . More similarity value means both targets are memlof same class in

higher probability.
CMFM =(s5 _/’I)T Kljl_(sj —H) Eq.2

In which, K%, is inverse of image covariance matrix and L is nemdf image bands. For pixel
with CMFM value closer to unit, it means the piieemore similar to the target.

2.3 Support Vector Machine (SVM)

We will first define the hard margin SVM, applicabio a linearly separable dataset, and then
modify it to handle non-separable data. The maximmargin classier is the discriminate

function that maximizes the geometric margih which is equivalent to minimizirjgy|*. This
wl]

leads to thefollowing constrained optimization problemminimizs,, %”W”ZSubject to:

yi(vv'rx +b)=1 i=1..n.The constraints in this formulation ensure that thaéximum margin

classier classifies each example correctly, wheclpassible since we assumed that the data is
linearly separable. In practice, data is often limegarly separable; and even if it is, a greater
margin can be achieved by allowing the classianigclassify some points. To allow errors we

replace the inequality constraints with(w'x +b)>1-& i=1..n Where & = 0 are slack
variables that allow an example to be in the ma(Qig &, <1, also called a margin error) or to
be misclassified § > )L Since an example is misclassified if the valfigti slack variable is

greater than 125 is a bound on the number of misclassified examplag objective of

maximizing the margin, i.e. minimizin% ||V\4|2Wi|| be augmented with a terrﬁzigﬁ to penalize
misclassification and margin errors. The optimatiproblem now becomesminimize,,
%”wﬂz +CY" & Subject toy,(w'x, +b)=1-& & =0 The constant C > 0 sets the relative

importance of maximizing the margin and minimizithg amount of slack. This formulation is
called the soft-margin SVM, and was introduced loyt€s and Vapnik (Sch olkopf and Smola,
2002). Using the method of Lagrange multipliers, @@ obtain the dual formulation which is
expressed in terms of variables(Cristianini and Shawe-Taylor, 2000):
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. 1 T B
makmizg > o ‘Ezzlzleij’iaﬁij Subjectto: Yy, =0, O<a, <C. Eq3

The dual formulation leads to an expansion of tlegght vector in terms of the input examples:

n
w=>y,a,x The examplesx, for which a, > 0 are those points that are on the margin or
i=1 .
within the margin when a soft-margin SVM is usetle3e are the so-called support vectors. The
expansion in terms of the support vectors is offgarse, and the level of sparsity (fraction of the
data serving as support vectors) is an upper bounnthe error rate of the classier (Cortes and
Vapnik, 1995).

The dual formulation of the SVM optimization profedepends on the data only through dot
products. The dot product can therefore be repladdd a non-linear kernel function, thereby

performing large margin separation in the featyraes of the kernel. The SVM optimization

problem was traditionally solved in the dual foratidn, and only recently it was shown that the
primal formulation, can lead to efficient kernelskd learning (DeCoste and Weston 2007).

3. ACCURACY EVALUATION METHOD

For decision making to separate target from nogetapixels, a threshold is necessary. One of
most reliable way to find a threshold is ngsiReceiver Operating Characteristic (ROC)
Curves. It has been used with the Neyman-Pearstimooh in signal detection theory. It can be
used to visualize a classifier performanceoroter to select the proper decision threshold.
The ROC Curves compare a series of similarity in@gssification results for different threshold
values with ground truth information. Aprobabiliby detection (Pd) versus a probability of
false alarm (Pfa) curve and a Pd versusrashold curve are reported for each selected
class (rule band).

For calculating of ROC curves, Confusion Matrixneeded. A confusion matrix is a form of
contingency table showing the differences betwé®e ground true data and classified images
and it is computed by cross tabulation tepi In case of a single class classification
target detection we obtain a confusion matuishsas given on Table 1.

Table1: A Confusion Matrix for Target Detection Case

Classified Classes
Confusion Matrix 0 1 sum
True 0 Tn Fp Cn
Classes 1 Fn Tp Cp
sum Rn Rp N

The elements of this matrix are defined as:
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Cn=Tn+Fp; Cp=Fn+Tn; Rn=Tn+Fn; Rp=Fp+Tp; Cn+Cp=Rn=Rp

Tn (true negative) is the number of non target Isixeénich are correctly classified as non target.
P (Tn) is its probability or rate as calculatechgsi P (Tn)=Tn/Cn.

Tp (true positive) is the number of targekels which are correctly classified as targe
and P(Tp) is its rate as obtained using: pfXTp/Cp. It is also called probability of
detection: Pd.

Fp (false positive) is the number of non targeels which are incorrectly classified as target
and P(Fp) is its probability as calculated: B(Fp)=Fp/Cn. It is also called probability of
false alarm: Pfa.

Fn (false negative) is the number of targetels which are incorrectly classified as non
target and P(Fn) is its probability as calculatedByFn)=Fn/Cp.

This matrix and its elements must be catedlafor a set of thresholds. In practice wesfi
number of thresholds between the minimum and maximalues of rule data. Then, for each
threshold, a Pd and Pfa could be calculated. Watth driple of (thr, Pd, Pfa) we can plot two
curves: A ROC that contains the Pd against tfe dhd another curve that contains the Pd
against the threshold. An example of ROC curvepegsented on Figure 1.
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Figurel: Curves (1) probability of detection versus probability of false alarm and (2) probability of detection
ver sus threshold

4. EXPERIMENTS

4.1 HSlI Data
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The above techniques are applied to CASI (Compakbofe Spectrographic Imager)
hyperspectral images. CASI has a flexible spec&sblution capability. It means that the image
data may have different numbers of bands, maxim8#& Zhese numbers of bans cover a rang
from 0.4 to 1.0 um of electromagnetic spectrumileod wide of each bands is about 10 um.
Spatial resolution of CASI is a function of its IF@nd altitude of airborne platform. It can vary
from 1 to 10 meters. Dynamic rang of sensor ist@rgparameter which produce the image data
with 12 bits or 4096 gray levels. CASI also is egpad by GPS and INS for In/Off fly
rectification and geo-referencing of images. Th&ada this test is one set of CASI image. The
spatial resolution of image is 2m and the numbdyamids for this image is fixed to 32 channels.

s000

4000

3000
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2000

1000
i 10 20 30 40

b band number C

a

Figure2: (a) thefalse color CASl image of study area (R=0.914, G=0.620, B=0.451), (b) Ground truth data for
accuracy evaluation, (c) The extracted spectra of building material

4.2 Experimental Results

For applying the techniques, we have selected tairtegye on the same area containing man-
made objects like’s roads, buildings and greenespat includes a 128X128 pixels image with
32 bands and a spatial resolution of 2 meters,u(Bi@-(a)). A target spectrum of building
materials has been extracted by collecting andagusy the spectra of manually selected pixels
for sample data (Figure 2-(c)).

The result maps for each method have been obtdkigdre 3). To compare and evaluate the
results, we extracted a true data map by visuaipnetation of the building materials of the scene
(Figure 2-(b)). For a quantitative evaluation ok thesults, we retain two elements of the
confusion matrix: the overall accuracy (OA), and Kappa coefficient (K). The overall accuracy
is calculated by summing the number of both taaget non target pixels correctly classified and
dividing by the total number of pixels. Because ®A is not a very complete and reliable

criterion, the Kappa coefficient is computed witkher elements of the confusion matrix

(Alimohammadi, 1998).
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Figure 3: theresultant images of algorithms actions: (1) MSAS, (2) CMFM, (3) SVM

It is visible that the SVM provides the less naisgults. From Table 2, we can observe that the
two quality criteria for this method are betterriHfaur other approaches. In all result maps, there
are some identified pixels which are relatively ilamto target but not completely. For MSAS
method, the target maps have a lot of mismatcHihg. CMFM results are more precise for this
purpose.

Table 2: computed quantitiesin assessing the experiments accuracy

Kappa

Overall
Accuracy
Coefficient

Algorithm

MSAS
MCMF
SVM

0.78

oo o
©|wo|©o
o|ai|P
o
0
w

5. CONCLUSION

This work shows that it is possible to extract froyperspectral data very important information,
useful for the environmental characterization dfaur areas. Even if in its preliminary stages, this
research has shown many potentialities for urbarote sensing. We have applied the SVM for
target detection in HSI. Experiments on urban H®hery illustrate that the SVM-based detector
can provide higher TPRs and substantially lower &BRan other methods in varying scenarios
of target spectral variability.

Future work, we intend to investigate a more effitiselection of the kernel parameter s rather
than performing a linear search over all the caatdids values. The selection of features that
maximize separability is crucial in PR systems. &mse of their success in a variety of PR
applications, we will investigate the potentialtbe discrete wavelet transform coefficients as
features in the context of SVM-based HSI targetciein.

REFERENCES

TS06I - Remote Sensing Il, 6135 8/10
Davood AKBARI, Abdorreza SAFARI, Iran
Support Vector Machine for Target Detection in Hygpectral Images

FIG Working Week 2012
Knowing to manage the territory, protect the envin@nt, evaluate the cultural heritage
Rome, Italy, 6-10 May 2012



Alimohammadi, A., 1998. Application of Remote sagsiin Urban Area. Ms Courses, in
RS&GIS departement of TMU Tehran.

Cristianini, N., and Shawe-Taylor, J., 2000. Anrdduction to Support Vector Machines.
Cambridge UP, Cambridge, UK.

DeCoste, D., and Weston, J., 2007. Large Scaleek&fachines. MIT Press, Cambridge.

Henz, N., and Wagner, T., 1997. A new approachedBHEP tests for multivariate normality. J.
Multivar. Anal., vol. 62, no. 1, pp. 1-23.

Kraut, S., Scharf, L. L., and McWhorter, L. T., 20Rdaptive subspace detectors,” IEEE Trans.
Signal Process., vol. 49, no. 1, pp. 1-16.

Manolakis, D., Marden, D., and Shaw, G., 2003. Hgpectral image processing for automatic
target detection applications. Lincoln Lab. J.,.\ddl, no. 1, pp. 79-114.

Manolakis, D., and Shaw, G., 2002. Detection atgars for hyperspectral imaging application.
IEEE Signal Process. Mag., vol. 19, no. 1, pp. 39-4

Scharf, L. L. and Friedlander, B., 1994. Matchedspace detectors, IEEE Trans. Signal
Process., vol. 42, no. 8, pp. 2146-2157.

Scharf, L. L., and McWhorter, L. T., 1996. Adaptireatched subspace detectors and adaptive
coherence. in Proc. 30th AsilomarConf. Signalst3yomput., Pacific Grove, CA.

Shaw, G., and Burke, H., 2003. Spectral imagingdanote sensing. Lincoln Lab. J., vol. 14, pp.
3-28.

Scholkopf, B., and Smola, A., 2002. Learning witkrikels. MIT Press, Cambridge, MA.

Tax, D. M. J., and Duin, R. P. W., 2004. Suppextter data description. Mach. Learn., vol. 54,
no. 1, pp. 45-66.

Vaz, C., and Thakor, N., 1989. Adaptive fourieriraation of time-varying evoked potentials.
ZEEE hns. Bwmed Eng., vol. 36, pp. 448455.

Yamany, S. M., Farag A. A. and Hsu S.-Y. 1999. Azfuhyperspectral classifier for automatic
target recognition (ATR) systems. Pattern Recodpeitt., vol. 20, no. 11-13, pp. 1431-1438.

BIOGRAPHICAL NOTES

TS06I - Remote Sensing Il, 6135 9/10
Davood AKBARI, Abdorreza SAFARI, Iran
Support Vector Machine for Target Detection in Hygpectral Images

FIG Working Week 2012
Knowing to manage the territory, protect the envin@nt, evaluate the cultural heritage
Rome, Italy, 6-10 May 2012



Davood Akbari has got his B.Sc. in Surveying Engimg from University of Imam Hossein,
Tehran, Iran. He has got his M.Sc. in Surveyingiggering with the specialization of Remote
Sensing from department of Surveying and Geomé&iggineering, University of Tehran, Iran.
He is PhD student of Remote Sensing in UniversityTehran and Assistant Professor in
University of Zabol now.

CONTACTS

Mr. Davood Akbari (Assistant Professor),

Dept. of Surveying and Geomatics Engineering,Fga@flEngineering,
University of Zabol, Zabol, IRAN.

Email: davoodakbari62@gmail.com

Tel: +98-915-561-9799

TS06I - Remote Sensing Il, 6135 10/10
Davood AKBARI, Abdorreza SAFARI, Iran
Support Vector Machine for Target Detection in Hygpectral Images

FIG Working Week 2012
Knowing to manage the territory, protect the envin@nt, evaluate the cultural heritage
Rome, Italy, 6-10 May 2012



