

<u>Timothy NUTTENS</u>¹, Alain DE WULF¹, Greet DERUYTER^{1,2}, Cornelis STAL¹, Hans DE BACKER³, Ken SCHOTTE³

¹Ghent University, Department of Geography, Belgium ²University College Ghent, Faculty of Applied Engineering Sciences, Belgium ³Ghent University, Department of Civil Engineering, Belgium

Outline

Department of Geography 3D DATA ACQUISITION

- Introduction
- Tunnel measurements
- Processing scan data
- Monitoring conclusions
- Comparison scanning instruments
- Conclusions

Application of laser scanning for deformation measurements: a comparison between different types of scanning instruments

Introduction

Department of Geography 3D DATA ACQUISITION

- Terrestrial laser scanning

- Deformation monitoring (ovalisation measurements) of newly built concrete tunnels
- Placement ---> 3 months after placement

Application of laser scanning for deformation measurements: a comparison between different types of scanning instruments

Timothy. Nuttens@UGent.be Alain. DeWulf@UGent.be

Introduction

- Diabolo Project (April 2009 - January 2010)

2 side-by-side tunnels of 1 km

Testing and implementation of measurement and processing workflows

Department of Geography 3D DATA ACQUISITION

- Liefkenshoek Rail Link Project (March 2010 - October 2011)

2 side-by-side tunnels of 6 km

Adjusting - optimization of workflows

Application of laser scanning for deformation measurements:

Tunnel measurements

- 14 sections in each tunnel tube

- 7 measurements per section

Department of Geography 3D DATA ACQUISITION

- Measurement immediately after placement
- Every week during 1st month (C1 C4)
- After 2 and 3 months (C5 C6)

Application of laser scanning for deformation measurements: a comparison between different types of scanning instruments

Processing scan data

Department of Geography 3D DATA ACQUISITION

- Manual filtering (70 80 % discarded)
- Best-fit cylinder with free diameter
- Meshing
- Cross-section through 'Master Target'
- Ray length every 0.1 grad
- Smoothing over 1 grad (X-0.5 to X+0.5)

Application of laser scanning for deformation measurements: a comparison between different types of scanning instruments

Timothy.Nuttens@UGent.be Alain.DeWulf@UGent.be

Monitoring conclusions

- Averaged radii compared with:

Design radius (3.6500 m)

Measurement after placement

Previous control measurement

Department of Geography 3D DATA ACQUISITION

- 2σ significance level

Application of laser scanning for deformation measurements: a comparison between different types of scanning instruments

Comparison scanning instruments

Department of Geography 3D DATA ACQUISITION

- Trimble Spatial Station VX

(5 points/sec)

3 000 points

Section only 1 time measured

Difference with Leica C10:

Alg. difference = -1.6 mm

Abs. difference = 1.7 mm

Application of laser scanning for deformation measurements: a comparison between different types of scanning instruments Timothy. Nuttens@UGent.be Alain. DeWulf@UGent.be

Conclusions

Department of Geography 3D DATA ACQUISITION Laser scanning is very applicable for ovalisation measurements

Achievable standard deviations are calculated:

Leica ScanStation2: $\sigma = 1.6 \text{ mm}$ Leica HDS 6100: $\sigma = 0.4 \text{ mm}$ Trimble Robotic S6: $\sigma = 0.8 \text{ mm}$ Leica C10: $\sigma = 0.4 \text{ mm}$

Trimble Spatial VX:

Difference with C10 = -1.6 / 1.7 mm

Application of laser scanning for deformation measurements:

