

Cornelis STAL¹, <u>Timothy NUTTENS¹</u>, Denis CONSTALES^{2,3} Ken SCHOTTE⁴, Hans DE BACKER⁴, Alain DE WULF¹

Ghent, Belgium

- ¹Ghent University, Department of Geography
- ² Ghent University, Department of Mathematical Analysis
- ³ Ghent University, Laboratory for Chemical Technology
- ⁴ Ghent University, Department of Civil Engineering

Deformation measurements of newly built tunnels with a Leica HDS 6100 phase-based laser scanner.

'Liefkenshoek rail link' project (Antwerp, Belgium)

Point set filtering: removal of points not belonging to the tunnel's surface → binary filtering

- Manual: time consuming
- Automatic: assume the local section as a cylinder
 - → implementation of Levenberg-Marquardt algorithm

Levenberg-Marquardt algorithm:

- Iterative parameter adjustment and point removal
- Gauss-Newton method (assumption of global non-linearity)
- Steepest descent method (assumption of local linearity)
- For a given point set \mathbf{x} with $(\mathbf{x} \in R^3)$, the parameter estimation of a cylinder will result in a set of parameters \mathbf{p} with $\mathbf{p} = (\mathbf{x}, \mathbf{A}, r)$. Here, \mathbf{x} is any point on the cylinder axis, \mathbf{A} is the rotation matrix and \mathbf{r} is the cylinder radius

Comparison between cross-sections derived from

- manually filtered point cloud
- automatically filtered point cloud

Two-sided t-test to determine whether the difference is statistical significant (95 % level of confidence).

- Levenberg-Marquardt algorithm has proven to be successful for filtering
- Satisfactory results (comparable cross-sections) were obtained
- Further optimization of application to reduce processing time is needed

Thank you!

Contact & Information: MSc. Cornelis Stal

Cornelis.Stal@UGent.be

Ghent University, Department of Geography, Ghent (Belgium) 3D Data Acquisition Cluster

