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SUMMARY  

 

This paper presents a new method for quantifying the carbon storage in urban trees using 

multispectral airborne LiDAR data. Our method consists of four steps: multispectral LiDAR data 

processing, vegetation isolation, dendrometric parameters estimation, and carbon storage modeling. 

Our results suggest that LiDAR-based dendrometric parameter estimation and allometric models 

can yield consistent performance and accurate estimation. Citywide carbon storage estimation is 

derived in this paper for the Town of Whitchurch-Stouffville, Ontario, Canada by extrapolating the 

values within the study area to the entire city based on the specific proportion of each land cover 

type. The proposed method reveals the potential of multispectral LiDAR data in land cover 

mapping and carbon storage estimation at individual-tree level. 

 

1. INTRODUCTION 

 

Urban vegetation has drawn the direct attention of city planners and policy makers, considering the 

importance of trees in in urban climate modification and energy conservation. In the context of 

Canada’s climate, annual cooling energy use can be reduced 10-19% by planting vegetation 

proximate to the houses and increasing the albedo of urban surfaces (Xu et al., 2012; Sawka et al., 

2013). City wide, urban trees reduce air pollution through direct dry deposition, and also influence 

the cooling of the ambient temperature, which slows smog formation. Vegetation contributes the 

largest proportion of carbon storage, which in return reduces the rate of climate warming and urban 

heat islands (Davies et al., 2011). Urban trees both sequester CO2 and store excess carbon in 

biomass (71% of total urban carbon storage), which significantly influences environmental quality 

and human health (Donovan & Butry, 2011; Roy & Pickering, 2012). Preserving carbon storage and 

improving green space infrastructure in urban areas has significant environmental benefits (van den 

Berg et al., 2015). Consequently, estimation and monitoring of urban carbon stocks and green space 

becomes important indeed. In literature, the carbon content stored in individual trees can be 

assessed through aboveground dry-weight biomass calculation using allometric equations. 

Dendrometric parameters, such as individual tree height or crown diameters, are generally used in 

the allometric equations to derive diameter at breast height (DBH). Dry biomass is then calculated 

using the allometric model, with DBH as the input, and further transformed to carbon storage with a 

conversion rate around 0.5 (Lieth, 1963). 

3D Modeling of Urban Tree Crown Volumes Using Multispectral LiDAR Data (8875)

Jonathan Li (China, PR) and Xinqu Chen (Canada)

FIG Working Week 2017

Surveying the world of tomorrow - From digitalisation to augmented reality

Helsinki, Finland, May 29–June 2, 2017



          

Airborne LiDAR has proven to be promising for the derivation of dendrometric parameters. 

Previous studies have shown that the LiDAR-derived canopy height model (CHM) has been used 

for dendrometric measurements and biomass estimation in urban studies (Huang et al., 2013; Raciti 

et al., 2014; Schreyer et al., 2014). Raciti et al. (2014) developed a LiDAR-height-only regression 

model to estimate carbon storage in urban trees across the city of Boston. A total of 404 accurately 

segmented tree crowns from the nDSM were split into 284 samples for model fitting and 120 

samples for validation. The reason for using a simple linear regression of tree biomass and height 

was to avoid the influence of crown segmentation results. A R
2
 of 0.79 was found between field-

estimated biomass and model-predicted biomass. Schreyer et al. (2014) estimated the carbon 

storage in urban trees, and its distribution was extrapolated to the entire city of Berlin in terms of 

land use types. This study did not propose a region-specific allometric model for the study area, but 

applied the LiDAR-DBH model developed by Zhao et al. (2009) and a carbon allometric model 

using DBH as the only independent variable. 87% of the modeled DBH showed an underestimation, 

which was further calibrated by a weighted arithmetic average DBH. The carbon storage in urban 

trees was calculated as half of the model-based biomass, regardless of the genus. Meanwhile the 

crown base height was assumed to be half of the LiDAR-derived height, and the crown width was 

calculated in 16 directions with a series of criteria, instead of the conventional estimation of crown 

width in 4 directions (Popescu et al., 2003; Xu et al., 2014). 

 

With the emerging multispectral LiDAR with multiple laser channels (or mLiDAR), it became 

possible to obtain both the range and multiple reflectance data from a single data source. The first 

commercial mLiDAR system, Titan, released by Teledyne Optech Inc., has integrated three laser 

channels at wavelengths of 532 nm (green), 1064 nm (NIR), and 1550 nm (SWIR), respectively. 

These three channels produce independent scan lines by sending pulses with separate forward 

angles (the channels NIR, SWIR and green have forward angles  0, 3.5, and 7.0, respectively). 

This emerging mLiDAR system showed great potential in land cover mapping without the aid of 

passive multispectral images (Wichmann et al., 2015). This active laser system can largely avoid 

those factors commonly associated with passive optical sensors, such as weather conditions and 

shadow effects. However, the potential of mLiDAR intensity currently remains undervalued, and 

 
Fig. 1 Location of 40 sampled trees in the field 

 

Table 1. Combinations of input data for SVM classification 

Selection 1 Green + NIR + SWIR + nDSM + pNDWI + pNDVI 
Selection 2 Green + NIR + SWIR + nDSM 

Selection 3 NIR + nDSM 
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the applications of this newly released system are at an early stage of development.  

Given the current state of development of tree inventory with single-channel conventional LiDAR 

data, this paper aims to explore the feasibility of mLiDAR range and intensity data in carbon 

storage estimation. To achieve this, vegetation covers are first classified based on mLiDAR range 

and intensity data by applying a Support Vector Machine (SVM) classifier. Secondly, dendrometric 

parameters such as tree height and crown diameter are derived, in order to establish an allometric 

relationship between LiDAR-derived measurements (tree height and crown diameter) and the field-

measured parameter (DBH) through regression modeling. Lastly, this study quantifies the carbon 

storage in urban trees for the Town of Whitchurch-Stouffville, Ontario, Canada. 

 

2. STUDY AREA AND DATASETS 

 

Located in the Town of Whitchurch-Stouffville, Ontario, Canada, the study area is characterized by 

a typical residential landscape. It contains two water bodies (Musselman Lake and Winsor Lake) 

and three land cover types: residential area, open area (grassland and woody area), and park and 

recreation. The residential area consists of single detached dwellings with mature street and 

backyard trees planted at least ten years ago. There are different types of trees that live in the study 

area, including deciduous trees such as maple, ash, oak, elm, black cherry, basswood, and conifers.  

 

Two mLiDAR datasets were acquired by Titan on July 2, 2015, which had two flight lines that 

covered and intersected at the study area. The flight altitudes were above 1000 m with a pulse 

frequency of 100 kHz for each channel, yielding an average point spacing of 0.8 m per point and an 

average point density of 7.7 point/m
2
. 

 

Field data were collected on February 9, 2016 (see Fig. 1). A total of 40 trees were sampled in the 

field that contained four attributes; height, DBH, crown diameter, and biomass were recorded for 

each single tree. Tree heights were measured using a hypsometer in units of meter. DBH was 

measured with a diameter tape in units of centimeter. Since the field measurement was conducted 

during the leaf-off season, the third attribute, crown diameter, was measured using aerial 

photographs from Google Earth. The crown diameter is defined as the mean of the maximum crown 

diameter and the diameter measured at the direction perpendicular to the maximum, using the Ruler 

tool in Google Earth in units of meter. The fourth attribute, single tree carbon storage, is estimated 

by plugging the field-measured DBH and tree height into the Canadian national aboveground all-

 
 (a) (b) 

Fig. 2 Examples of LiDAR-intensity-derived indices 
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species biomass equations (Lambert et al., 2005). The equations calculate the dry aboveground 

biomass by relating tree height and DBH to each biomass component, such as wood, bark, and 

foliage, with a uniform relationship:  𝐵𝑖𝑜𝑚𝑎𝑠𝑠 =  
1

𝐷𝐵𝐻 2 𝐻 3  ; where 1, 2 and 3 are the 

parameters generated for the all-species group with different values according to the tree 

compartments. The carbon storage in sampled trees was then defined as half of the sum of the dry 

aboveground biomass in each compartment.  

 

3. METHOD 

 

3.1 mLiDAR data processing 

 

After removing outliers and rectifying the mLiDAR intensity values, point clouds from two flight 

strips were merged together; in total, three mLiDAR point clouds were acquired by the Titan laser 

channels. Then each point cloud was rasterized into an intensity image with a ground resolution of 

1m. The pixel size was selected according to the point spacing of the dataset. By selecting the pixel 

size close to the point spacing, most of the pixels can contain at least one point, and the vertical 

distribution of the points can be largely highlighted. In this way, points were grouped into 1 m grids 

and the pixel values were assigned by the mean intensity of the points within the grid. For the grids 

which had no point filled in, the grid values were interpolated linearly by searching the neighbors. 

Here, three mean intensity raster data were generated for channel 532 nm, 1064 nm, and 1550 nm, 

respectively.  

 

Besides the generation of mLiDAR intensity images, DSM and DTM were created from the raw 

mLiDAR by a ground-point filtering and rasterization process. The whole mLiDAR dataset was 

then classified into ground and non-ground classes. DTM raster data was generated by rasterizing 

all the ground points into 1m grids, based on the linear interpolation method. The DSM was 

generated in a similar way by using the non-ground class, and the maximum height within the grid 

was assigned to the pixel values. In this way, the points that represented the treetops could be 

largely reserved.  Lastly, normalized DSM (nDSM) raster data was acquired by subtracting the 

DTM from the DSM.  

 

3.2 Vegetation isolation 

 

Besides the multispectral intensity and nDSM data described above, two additional indices were 

derived as follows: 

 𝑝𝑁𝐷𝑊𝐼 =  
𝐶𝐺𝑟𝑒𝑒𝑛− 𝐶𝑁𝐼𝑅

𝐶𝐺𝑟𝑒𝑒𝑛+ 𝐶𝑁𝐼𝑅
 (1) 

 𝑝𝑁𝐷𝑉𝐼 =  
𝐶𝑁𝐼𝑅− 𝐶𝑆𝑊𝐼𝑅

𝐶𝑁𝐼𝑅+ 𝐶𝑆𝑊𝐼𝑅
 (2) 

where CGreen, CNIR, and CSWIR refer to the laser channels at 532 nm, 1064 nm, and 1550 nm, 

respectively. 
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By visually examining the pNDWI and pNDVI indices (see Fig. 2), both the pNDVI and pNDWI 
showed good discrimination for artificial objects. These two indices can facilitate the manual 

selection of training samples and work as the ancillary data in the classification process. The 

contribution of these two indices to the overall classification accuracy was analyzed. A total of six 

input data, including 1) Green  channel intensity, 2) NIR  channel intensity, 3) SWIR  channel 

intensity, 4) nDSM, 5) pNDWI, and 6) pNDVI, were generated and input into the classification 

scheme. 

 

Because the study area was characterized by simple residential landscape, it could be grouped into 

six land cover types, including water, house, road, grass, tree, and open area. However, due to the 

bathymetry capability of the channel at 532 nm, water points in the study area tended to have 

irregular intensity that was induced by the interaction of laser points with both the water surface and 

organic matter underneath. Hence, water bodies including Musselman Lake, Windsor Lake, and one 

small water region were masked out of the dataset, resulting in only five land cover types being 

trained and classified in this study. Interpreting land cover types from LiDAR intensity was not as 

easy as from passive optical images. Certain land cover types, such as grass and open area, could be 

distinguished from only one or two intensity data and could hardly be identified from the rest.  

 

A support vector machine (SVM) classifier was selected to perform land cover classification with 

mLiDAR-derived data due to the popularity of SVM in single-channel LiDAR-related classification 

studies, making the classification result of this study comparable to previous studies. The SVM 

classification was performed on three combinations of the input data, shown in Table 1. The 

selection of input data was mainly designed for showing the benefits of mLiDAR in land cover 

classification (Selection 2), compared with single-channel LiDAR data (Selection 3). Meanwhile, 

Selection 1 was designed to examine the contribution of multispectral-intensity-derived indices in 

overall classification accuracy. 

 

3.3 Dendrometric parameter estimation 

 

   
 (a) (b) 

Fig. 3 Measurement of tree height and crown diameter: (a) location of the pixel with the 

maximum value within a tree crown; (b) illustration of the crown diameter measurement 
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The tree-isolated nDSM was also referred to as the CHM, a model displaying tree positions by tree 

crowns in a top-down view and storing the height values in pixels. A 3  3 local maxima filter was 

first employed on the CHM to detect treetops. A pixel with the highest value amongst its eight 

neighbors was defined as the treetop. To eliminate the commission errors associated with the local 

maxima filtering and detect the true treetop pixels, the local maxima in the CHM were further 

filtered by the mLiDAR intensity data. The mLiDAR intensity values were dependent not only on 

the reflectivity of the object, but also on the range between the sensor and the object. A true treetop 

pixel would have both high intensity and height values. Under this assumption, another 1-m raster 

data was generated as the sum of the maximum intensity of the first return in each channel. The 

clusters of local maxima in the CHM which had more than fifteen pixels together were further 

extracted, and only the pixels that were also the local maxima in the maximum intensity layer were 

retained in the final treetop results. Previous studies relied on changing the window size and shape 

of the filter to refine the treetops (Chen et al., 2006; Zhao et al., 2009). These approaches were not 

suitable here because the CHM resolution (1 m) generated in this study was relatively coarse, so 

that increasing the window size of the local maxima filter would result in excluding small tree 

crowns. 

 

The Marker-controlled watershed segmentation was applied to segment the CHM into individual 

tree crowns by defining the pre-detected treetops as the markers. In this way, every pre-detected 

treetop would have one closed segment. The performance of the segmentation in isolating tree 

crowns was evaluated by the absolute accuracy, calculated as:  

 absolute accuracy𝑡𝑟𝑒𝑒 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =  
𝑛1,1

𝑛𝑡𝑜𝑡𝑎𝑙
 (3) 

where 𝑛1,1 is the number of detected crown segments which have a one-to-one relationship to the 

ground truth; n_total is the number of tree crowns in the ground truth. Tree height is defined as the 

average of the local maxima within each segment, and crown diameter is defined as the average of 

the maximum crown diameter passing through the center of the local maxima and the one measured 

at the perpendicular direction (see Fig. 3).  

 

 
(a)(b)(d), and (e) reprinted from Google Earth (2015) 

Fig. 4 Trees with dark-colour leaves in Google Earth and the pNDVI 
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To evaluate the accuracy of the mLiDAR-derived dendrometric parameters, the mLiDAR-derived 

tree height and crown diameter were compared with the field measurements. The crown segments 

generated from the LiDAR data were matched with the 40 field-sampled trees, and the RMSE and 

bias were calculated to compare the mLiDAR-derived dendrometric parameters with field samples: 

 

 Bias =  
∑ 𝑋𝐴𝐿𝑆,𝑖−𝑋𝑓𝑖𝑒𝑙𝑑,𝑖

𝑛
𝑖=1

𝑛
 (4) 

 RMSE = √
∑ 𝑋𝐴𝐿𝑆,𝑖−𝑋𝑓𝑖𝑒𝑙𝑑,𝑖)2𝑛

𝑖=1

𝑛
 (5) 

 RMSE% =
RMSE

𝑋̅𝐴𝐿𝑆
 (6) 

where n is the number of field samples, which equaled 40 trees in this study; X refers to the values 

of dendrometric parameters (height or crown diameter) measured either in the field or from the ALS 

data; and 𝑋̅𝐴𝐿𝑆 is the arithmetic mean of the mLiDAR-derived measurements. Moreover, a linear 

regression model was fit to the mLiDAR-derived tree height and crown diameter to determine if 

there was a strong correlation between these two variables. 

 

3.4 Carbon storage modeling 

 

In order to predict the carbon storage in trees, a multiple linear regression model was developed 

empirically to fit the data, with the LiDAR-derived dendrometric parameters as the independent 

predictors and the field-measured DBH as the predicted variable. The empirical equation derived 

from the LiDAR-DBH linear regression model has the form: 

  DBH𝐹𝑖𝑒𝑙𝑑 = 𝑎 ∙ 𝐶𝐷𝐴𝐿𝑆 + 𝑏 ∙ 𝐻𝐴𝐿𝑆 + 𝑐 (7) 

 

The 40 field-sampled trees were split into two datasets, with 20 trees used for model 

parameterization and the remaining 20 trees reserved for validation. To eliminate the influence of 

tree locations in model fitting, each 10 adjacent tree samples were grouped together under one 

sampling location, resulting in a total of four sampling groups. Six combinations of training and 

validation datasets were chosen by selecting two sampling locations out of four for model 

development and using the remaining two locations for validation. All six models were developed 

at a 0.05 significance level and were fitted through a cross validation process. The parameters 

generated for each model were collected. The predictive power of the regression models and the 

performance were inspected by the coefficient of determination (R
2
), and the accuracy of the 

prediction was examined by the RMSE of the predicted parameters. Comparing R
2 

and RMSE of 

the six mLiDAR-DBH regression models, the one with high R
2
 in the model fitting and low RMSE 

in the validation was selected to predict DBH. 
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After selecting the mLiDAR-DBH regression model, the mLiDAR-estimated DBH and height were 

plugged into the Canadian national above-ground biomass equations proposed by Lambert et al. 

(2005) to estimate the carbon storage in trees. From Lambert et al. (2005), the set of equations 

based on DBH and height for all species was selected to calculate the biomass, since no genus or 

species information was available in this study. The above-ground biomass was estimated as the 

sum of biomass in tree compartments (foliage, branch, wood, and bark). The carbon stored in trees 

was estimated as the half of total biomass. The carbon storage predicted by the mLiDAR-derived 

parameters was compared with that estimated by the field-measured DBH and height and evaluated 

by the RMSE and R
2
. 

 

To show whether carbon storage in trees varied with land cover types, the mLiDAR-derived tree-

crown segments were first converted into vector data in GIS, with the amount of carbon storage 

stored in the attributes. The carbon storage within each land cover type was calculated by adding up 

all the carbon storage in trees and dividing by the area of the land cover type. For the Town of 

Whitchurch-Stouffville, the carbon stocks were extrapolated by multiplying the specific carbon 

amount per unit area with the total area of each land cover type. For those land cover types which 

were excluded in the study area (namely government and institutional areas and industrial sites), the 

carbon stored in government and institutional areas was given the same amount per unit area as the 

residential, but the carbon stored in industrial sites was given zero. Then a citywide carbon storage 

map was created. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Analysis of Multispectral LiDAR Data for Land Cover Classification 

 
Fig. 5 Classification map 
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Because the classification at tree-genus or -species level is important, especially for precise biomass 

estimation, the spectral patterns of the tree class were examined further to find if current mLiDAR 

datasets could distinguish the tree class into conifer and deciduous trees. After confirming the tree 

types in Google Earth, there were no obvious distinctions between the tree genus by visual 

observations. However, through close visual observation of the pNDVI dataset, the trees with dark-

colour leaves, such as the Crimson King Maple tree, could stand out from the tree class (see Fig. 4). 

The mLiDAR datasets generated in the chapter may not be sensitive enough to provide separate 

classification for conifers and deciduous trees. However, the analysis presented here shows that the 

mLiDAR intensity may be influenced by factors such as the colour/reflectivity of the objects, which 

in turn will be beneficial to studies of tree mortality, rooftop solar energy, and so on.  

 

Accuracy assessment was conducted on the classification results in order to examine the 

classification performance of mLiDAR data. Fig. 5 shows the final classification map. The 

combination of all six input data achieved the highest overall accuracy among the three selections. 

The 89% overall accuracy was achieved using the mLiDAR-derived raster data, which indicated 

that the contributions of the two calculated indices to the overall accuracy were not significant. The 

comparison between single-channel LiDAR data and mLiDAR data on land cover classification was 

also conducted; the same classification process was applied to the nDSM and NIR bands only. The 

overall accuracy of classification in use of single-channel LiDAR data was around 79%. 

 

4.2 Results for the Local Maxima Selection 

 

Table 2. Validation statistics for the mLiDAR-derived dendrometric 

parameters 

Parameter RMSE RMSE% Bias Bias% 

Height (m) 1.21  6.8%  -0.20 -0.1%  

Crown Width (m) 1.47  16.4%  -0.18  -2%  
 

Table 3. Results of model fitting and model validation 

Mode

l 

Model Fit 

R
2
 

Model Fit 

RMSE 

(cm) 

Validation 

R
2
 

Validation 

RMSE 

(cm) 

1 0.83 5.35 0.80 6.82 

2 0.86 6.60 0.76 5.60 

3 0.86 3.86 0.71 8.25 

4 0.75 7.89 0.77 4.82 

5 0.78 5.59 0.85 6.55 

6 0.81 7.00 0.83 5.20 

 

Table 4. Accuracy of mLiDAR-predicted vs. field-measured results 

Parameter RMSE RMSE% Bias Bias% 

DBH (cm) 6.39  13.1%  0.44  0.1%  

Carbon (kg) 142.0  28.6%  14.4  2.9%  

 

3D Modeling of Urban Tree Crown Volumes Using Multispectral LiDAR Data (8875)

Jonathan Li (China, PR) and Xinqu Chen (Canada)

FIG Working Week 2017

Surveying the world of tomorrow - From digitalisation to augmented reality

Helsinki, Finland, May 29–June 2, 2017



          

The second step of the methodology was to find the local maxima in the tree-isolated nDSM (the 

so-called CHM) as the treetop candidates. In this paper, a new approach is proposed to reduce the 

number of pixels generated by the original 3  3 local maxima filter and to find the true treetop 

pixels. Fig. 6 illustrates the comparison between the original local maxima result performed on the 

CHM and the refined result, which only retained the pixels that had a local maximum on both the 

maximum intensity data and the CHM. The clusters of local maxima in the original result were 

eliminated by the proposed method. Then the watershed segmentation algorithm was applied to 

generate crown segments, using the refined local maxima as the markers (see Fig. 6 (c)). 

 

4.3 Validations for the ALS-derived Dendrometric Parameters 

 

The accuracies of LiDAR-derived tree height and crown width were assessed by the samples 

measured in the field. For the mLiDAR-derived tree height, an RMSE of 1.21 m (relative RMSE = 

6.8%) and a negative bias of 0.2 m (relative bias = -0.1%) are given in Table 2. For the LiDAR-

derived crown width, an RMSE of 1.47 m (relative RMSE = 16.4%) and a negative bias of 0.18 m 

 
Fig. 6 Results obtained by local maxima filtering and the maker controlled watershed 

segmentation 
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(relative bias = - 2%) were observed. The tree height was underestimated because of the 

undergrowth and factors related to the flight height (1000 m) and the point density (7 to 8 

points/m
2
). The relative RMSE of crown width was mainly caused by the resolution of the CHM 

and the results of crown segmentation. 

 

4.4 Validations for the mLiDAR-predicted DBH and Tree Carbon 

 

The results of model fitting and validation of the six mLiDAR-DBH regression models are listed in 

Table 3. The 40 field-measured samples were previously split into 4 groups, with 10 trees in each 

group. The models were iteratively fitted by 20 trees selected from two groups out of four and were 

validated by the remaining 20 trees. Model 2 was selected as the overall best model to predict DBH 

in this study because it has a relatively high coefficient of determination (R
2
=86%) from model 

fitting and a relatively low RMSE (5.6 cm) from the validation. The regression equation is:  

 DBH =  −11.2792 +  (−0.2958) CD +  3.2637  H  (8) 

To determine the number of decimal places for the coefficients in the regression equation, the 

residuals between the DBH values predicted by the coefficients with eight decimal places and those 

predicted by coefficients rounded to two, three, and four decimal places,  respectively, are 

compared in Fig. 8. To keep high prediction accuracy, coefficients in the regression model are 

rounded to four decimal places. Moreover, the R
2
 between field-measured tree height and crown 

width was calculated as 0.34, indicating insignificant correlation between these two variables. 

Though DBH cannot be directly measured on the CHM, all the generated mLiDAR-DBH models 

showed that the DBH correlated well with mLiDAR measurements. The accuracies of the 

mLiDAR-modeled DBH and mLiDAR-derived carbon storage are given in Table 4. The predicted 

DBH using mLiDAR-derived parameters corresponded to an RMSE of 6.4 cm (relative RMSE = 

13.1%) and a bias of 0.4 cm. The relationship between field-measured DBH and mLiDAR-modeled 

DBH is plotted in Fig. 8. The results are compared with the reference carbon storage estimated by 

field-measured DBH and plotted in Fig. 9. The R
2
 of both DBH and carbon storage were both above 

0.80. The predicted carbon storage using ALS-modeled DBH corresponded to an RMSE of 142 kg 

(28.6%) and a bias of 14.4 kg. 

 

4.5 Analysis of the LiDAR-estimated Results 
 

 
Fig. 7 Residual plots for model-predicted DBH generated by coefficients with 2, 3, and 4 

decimal places 
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The accuracy of tree-height measurements using LiDAR data has previously been studied by Yu et 

al. (2004), Kaartinen et al. (2012), and Hadaś & Estornell (2016). Yu et al. (2004) found that as 

flight altitude increased from 400 m to 1500 m, the accuracy of tree heights lowered from 0.76 to 

1.16 m for single tree species. Kaartinen et al. (2012) reported that the best methods which utilized 

the local maxima finding with a point density of 8 points / m
2
 could obtain a RMSE of 60 cm to 80 

cm for tree heights. Hadaś & Estornell (2016) showed that the bias of tree height measurements 

could decrease from -1.48 m to -0.72 m if the point density increased from 3.5 points / m
2
 to 9 

points / m
2
. The RMSE achieved in the present study is in line with these studies and is potentially 

affected by the errors generated during the field measurements. Both overestimations of the crown 

size and underestimations of the tree heights are likely a result of the overlaying crown covers of 

the dominant tree and the suppressed trees, but could be mitigated if the resolution of CHM is at the 

sub-meter level. The results of LiDAR-modeled DBH are in line with the findings in Hauglin et al. 

(2014) and Popescu et al. (2007) regarding the tree height and crown diameter as good predictors to 

predict DBH using linear regression. The accuracy found in the present study is higher than these 

two studies. Hauglin et al. (2014) reported an RMSE of 35% for LiDAR-estimated DBH of Norway 

spruce. Popescu et al. (2007) reported a lower RMSE (4.9 cm) and higher R
2
 compared to the 

present study. However, considering that the accuracies in Popescu et al.  (2007) were for single 

tree species, which had an average DBH of 29.55 cm, and that they used all 43 sampled trees to 

construct the model and validate the model using the same dataset, the RMSE% and R
2
 in their 

study would understandably be higher than that in this study. For aboveground biomass, Popescu 

(2007) reported an RMSE of 47% for single tree species. Kankare et al. (2013) reported RMSEs of 

26.3% and 36.8% for pines and spruce, respectively. Huaglin et al. (2014) achieved an RMSE of 

35.1% for biomass estimation. Though the achieved accuracy of carbon estimation is higher in the 

present study, these studies are not entirely comparable because some studies used field-destructive 

measurements as reference data, which were not available in this study. Also, because genus 

information is not available, the estimation of carbon stocks was done by the allometry equations 

for all species in Lambert et al. (2005), so that the derived carbon mainly depended on the LiDAR-

derived DBH and height, with little consideration given to the differences in species. 

 

4.6 Analysis of the Carbon Storage 

 
Fig. 8 Scatterplot of the LiDAR-

modeled vs. field-measured DBH. 

 

Fig. 9 Scatterplot of the LiDAR-predicted 

vs. field-estimated carbon storage. 
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There were a total of 2555 dominant trees in the study area. The trees were located along the 

roadsides, in the backyards, and around the lakes. The average tree carbon was 484.3 kg and 

resulted in a total of 1.24 kt C (10
3
 tons Carbon). The study area could be divided into four land use 

types: residential, park and recreational, open area, and water. The open area occupied the largest 

portion of the study area, 47.0 ha. The residential area occupied 25.8 ha. The park had a small area 

of 2.5 ha. The extracted carbons in trees were therefore grouped based on the land use type, and the 

amount of carbon stored in each land cover type was calculated. Within the study area, the open 

area contained the largest tree carbon stocks (682.7 t), followed by the residential area (362.6 t), and 

finally the parks and recreational area (29.2 t). The tree carbon storage for the open area, residential 

area, and parks on a per-unit-area basis were 14.54 t C/ ha, 14.08 t C/ha, and 11.57 t C/ha, 

respectively. City wide, open area occupied 83.7% (191.5 km
2
) of the total city area and contained 

the largest carbon storage, 278.4 kt C. Residential area covered 8.3% (19.4 km
2
) of the total city 

area and contained 27.3 kt C tree carbons. Parks covered 12.8 km
2
 with a total carbon storage 

estimated at 14.8 kt C.  The carbon storage map shows that large tree carbon stocks are accumulated 

in urban environments and are distributed heterogeneously among land use types (see Fig. 10).  

 

The estimated tree carbons in the study area were in line with the estimation of carbon storage in 

Canadian urban trees conducted by researchers at Environment Canada (Pasher et al., 2014). Pasher 

et al. (2014) estimated the carbon stocks in trees by applying the crown cover area of urban trees 

and a Canadian-specific area-based growth rate for urban trees. Pasher et al. (2014) reported a total 

urban area of 5317 km
2
 in Ontario Mixedwood Plains with an estimation of carbon storage at 

9177.6 kt C, resulting in a carbon storage per unit urban area as 17 kt C/ha. This is slightly more 

than what has been predicted in this study (around 14 kt C/ha).  

 

5. CONCLUSIONS 
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In this paper we have proposed a method to map land covers and estimate aboveground carbon 

storage in trees at a spatial resolution of 1 m using mLiDAR data. Our study achieved an overall 

accuracy of 90%, which was 11% higher than that obtained using single-wavelength LiDAR data. 

The dendrometric parameters at single-tree level can be derived directly from the mLiDAR data. It 

also shows how the use of both spectral and geometric properties of mLiDAR data can improve the 

detection of treetops. This paper presented the feasibility of applying forest-based allometric 

methods to assess carbon stocks in urban environments. Dominant trees with fewer underneath or 

nearby trees were better detected and analyzed. Though DBH cannot be directly measured from 

mLiDAR data, the mLiDAR-predicted DBH remains a power predictor for estimating tree carbon at 

the individual-tree level. More accurate tree carbon measurements could be obtained if genus 

information and crown base heights were further investigated. An improvement of derivation of the 

crown width would also help in better prediction of tree carbon stocks. This paper derived similar 

carbon amounts per unit area in both residential areas and open areas within the study area, because 

the open area had twice the size of the residential area but the density of the canopy covers was less 

than it was in the residential area.  
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